These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 1567889)

  • 1. Incorporation into a planar lipid bilayer of K channels from the luminal membrane of rabbit proximal tubule.
    Bellemare F; Morier N; Sauvé R
    Biochim Biophys Acta; 1992 Mar; 1105(1):10-8. PubMed ID: 1567889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence from incorporation and patch-clamp experiments for a nonselective channel of large conductance at the luminal membrane of rabbit proximal tubule.
    Bellemare F; Dubé L; Sauvé R
    Can J Physiol Pharmacol; 1996 Mar; 74(3):265-72. PubMed ID: 8773405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brush-border membrane cation conducting channels from rat kidney proximal tubules.
    Marom S; Dagan D; Winaver J; Palti Y
    Am J Physiol; 1989 Sep; 257(3 Pt 2):F328-35. PubMed ID: 2476939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maturational changes in rabbit renal brush border membrane vesicle urea permeability.
    Quigley R; Flynn M; Baum M
    Pediatr Res; 1999 Jan; 45(1):143-7. PubMed ID: 9890623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Ca-activated K channel from rabbit renal brush-border membrane vesicles in planar lipid bilayers.
    Zweifach A; Desir GV; Aronson PS; Giebisch GH
    Am J Physiol; 1991 Jul; 261(1 Pt 2):F187-96. PubMed ID: 1713419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence from incorporation experiments for an anionic channel of small conductance at the apical membrane of the rabbit distal tubule.
    Denicourt N; Cai S; Garneau L; Brunette MG; Sauvé R
    Biochim Biophys Acta; 1996 Dec; 1285(2):155-66. PubMed ID: 8972699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stretch- and volume-activated channels in isolated proximal tubule cells.
    Filipovic D; Sackin H
    Am J Physiol; 1992 May; 262(5 Pt 2):F857-70. PubMed ID: 1317123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of ion channels from Acetabularia plasma membrane in planar lipid bilayers.
    White PJ; Smahel M; Thiel G
    J Membr Biol; 1993 Apr; 133(2):145-60. PubMed ID: 8515431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion channels of Fasciola hepatica incorporated into planar lipid bilayers.
    Jang JH; Kim SD; Park JB; Hong SJ; Ryu PD
    Parasitology; 2004 Jan; 128(Pt 1):83-9. PubMed ID: 15002907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ca(2+)-activated K+ channels from an insulin-secreting cell line incorporated into planar lipid bilayers.
    Oosawa Y; Ashcroft SJ; Ashcroft FM
    Diabetologia; 1992 Jul; 35(7):619-23. PubMed ID: 1379561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potassium channels in Necturus proximal tubule.
    Kawahara K; Hunter M; Giebisch G
    Am J Physiol; 1987 Sep; 253(3 Pt 2):F488-94. PubMed ID: 2443020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Na+ selective channels in the apical membrane of rabbit late proximal tubules (pars recta).
    Gögelein H; Greger R
    Pflugers Arch; 1986 Feb; 406(2):198-203. PubMed ID: 2421239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water permeabilities and salt reflection coefficients of luminal, basolateral and intracellular membrane vesicles isolated from rabbit kidney proximal tubule.
    Van der Goot FG; Podevin RA; Corman BJ
    Biochim Biophys Acta; 1989 Nov; 986(2):332-40. PubMed ID: 2590675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two types of K(+) channels at the basolateral membrane of proximal tubule: inhibitory effect of taurine.
    Noulin JF; Brochiero E; Lapointe JY; Laprade R
    Am J Physiol; 1999 Aug; 277(2):F290-7. PubMed ID: 10444584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-channel analysis of a K channel at basolateral membrane of rabbit proximal convoluted tubule.
    Parent L; Cardinal J; Sauvé R
    Am J Physiol; 1988 Jan; 254(1 Pt 2):F105-13. PubMed ID: 2447800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ba2+-sensitive K+ channels in luminal-membrane vesicles from pars convoluta of rabbit proximal tubule.
    Jacobsen C; Røigaard-Petersen H; Sheikh MI
    FEBS Lett; 1989 Jan; 243(2):173-6. PubMed ID: 2917644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amiloride-sensitive sodium channels in rabbit cortical collecting tubule primary cultures.
    Ling BN; Hinton CF; Eaton DC
    Am J Physiol; 1991 Dec; 261(6 Pt 2):F933-44. PubMed ID: 1721497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diffusional water permeability (PDW) of adult and neonatal rabbit renal brush border membrane vesicles.
    Mulder J; Baum M; Quigley R
    J Membr Biol; 2002 Jun; 187(3):167-74. PubMed ID: 12163975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyposmotic activation of Ca-activated K channels in cultured rabbit kidney proximal tubule cells.
    Kawahara K; Ogawa A; Suzuki M
    Am J Physiol; 1991 Jan; 260(1 Pt 2):F27-33. PubMed ID: 1992778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maturational changes in rabbit renal brush border membrane vesicle osmotic water permeability.
    Quigley R; Harkins EW; Thomas PJ; Baum M
    J Membr Biol; 1998 Jul; 164(2):177-85. PubMed ID: 9662561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.