These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 15679146)
21. Diastereomeric resolution of rac-1,1'-bi-2-naphthol boronic acid with a chiral boron ligand and its application to simultaneous synthesis of (R)- and (S)-3,3'-disubstituted 1,1'-bi-2-naphthol derivatives. Lee CY; Cheon CH J Org Chem; 2013 Jul; 78(14):7086-92. PubMed ID: 23786156 [TBL] [Abstract][Full Text] [Related]
22. Determination of enantiomeric composition by negative-ion electrospray ionization-mass spectrometry using deprotonated N-(3,5-dinitrobenzoyl)amino acids as chiral selectors. Brewer BN; Zu C; Koscho ME Chirality; 2005 Oct; 17(8):456-63. PubMed ID: 16100716 [TBL] [Abstract][Full Text] [Related]
23. Separation of binaphthol enantiomers through achiral chromatography. Baciocchi R; Zenoni G; Mazzotti M; Morbidelli M J Chromatogr A; 2002 Jan; 944(1-2):225-40. PubMed ID: 11831757 [TBL] [Abstract][Full Text] [Related]
24. Direct high-performance liquid chromatographic separation of peptide enantiomers: study on chiral recognition by systematic evaluation of the influence of structural features of the chiral selectors on enantioselectivity. Czerwenka C; Lämmerhofer M; Maier NM; Rissanen K; Lindner W Anal Chem; 2002 Nov; 74(21):5658-66. PubMed ID: 12433102 [TBL] [Abstract][Full Text] [Related]
25. Liquid chromatographic resolution of 2-hydroxycarboxylic acids on a new chiral stationary phase derived from (S)-leucine. Hyun MH; Kang MH; Han SC J Chromatogr A; 2000 Jan; 868(1):31-9. PubMed ID: 10677077 [TBL] [Abstract][Full Text] [Related]
26. On-bead combinatorial approach to the design of chiral stationary phases for HPLC. Murer P; Lewandowski K; Svec F; Fréchet JM Anal Chem; 1999 Apr; 71(7):1278-84. PubMed ID: 10204033 [TBL] [Abstract][Full Text] [Related]
27. Performance of brush-type HPLC chiral stationary phases with tertiary amide in the connecting tether. Forjan DM; Kontrec D; Vinković V Chirality; 2006 Nov; 18(10):857-69. PubMed ID: 16977611 [TBL] [Abstract][Full Text] [Related]
28. Identification of chiral selectors from a 200-member parallel combinatorial library. Wang Y; Bluhm LH; Li T Anal Chem; 2000 Nov; 72(21):5459-65. PubMed ID: 11080901 [TBL] [Abstract][Full Text] [Related]
29. Heterocomplexation of a chiral dipeptide and quantitative enantiomeric enrichment of nonracemic 1,1'-bi-2-naphthol. Shan Z; Xiong Y; Yi J; Hu X J Org Chem; 2008 Nov; 73(22):9158-60. PubMed ID: 18939866 [TBL] [Abstract][Full Text] [Related]
30. Direct enantioselective separation of bevantolol by high-performance liquid chromatography on normal and reverse cellulose chiral stationary phases. Aboul-Enein HY; Serignese V Biomed Chromatogr; 1994; 8(1):22-5. PubMed ID: 8130628 [TBL] [Abstract][Full Text] [Related]
31. Resolution of the enantiomers of oxamniquine by capillary electrophoresis and high-performance liquid chromatography with cyclodextrins and heparin as chiral selectors. Abushoffa AM; Clark BJ J Chromatogr A; 1995 May; 700(1-2):51-8. PubMed ID: 7767464 [TBL] [Abstract][Full Text] [Related]
32. Liquid chromatographic resolution of racemic rasagiline and its analogues on a chiral stationary phase based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid. Tak KM; Park EJ; Hyun MH J Sep Sci; 2013 Dec; 36(23):3682-7. PubMed ID: 24106082 [TBL] [Abstract][Full Text] [Related]
33. Efficient Determination of the Enantiomeric Purity and Absolute Configuration of Flavanones by Using (S)-3,3'-Dibromo-1,1'-bi-2-naphthol as a Chiral Solvating Agent. Du G; Li Y; Ma S; Wang R; Li B; Guo F; Zhu W; Li Y J Nat Prod; 2015 Dec; 78(12):2968-74. PubMed ID: 26641704 [TBL] [Abstract][Full Text] [Related]
34. Further proof to the utility of polysaccharide-based chiral selectors in combination with superficially porous silica particles as effective chiral stationary phases for separation of enantiomers in high-performance liquid chromatography. Kharaishvili Q; Jibuti G; Farkas T; Chankvetadze B J Chromatogr A; 2016 Oct; 1467():163-168. PubMed ID: 27567142 [TBL] [Abstract][Full Text] [Related]
35. Experimental support differenciating two proposed chiral recognition models for the resolution of N-(3,5-dinitrobenzoyl)-alpha-arylalkylamines on high-performance liquid chromatography chiral stationary phases. Hyun MH; Ryoo JJ; Pirkle WH J Chromatogr A; 2000 Jul; 886(1-2):47-53. PubMed ID: 10950274 [TBL] [Abstract][Full Text] [Related]
36. Recent development trends for chiral stationary phases based on chitosan derivatives, cyclofructan derivatives and chiral porous materials in high performance liquid chromatography. Xie SM; Yuan LM J Sep Sci; 2019 Jan; 42(1):6-20. PubMed ID: 30152091 [TBL] [Abstract][Full Text] [Related]
37. Separation of enantiomers of chiral sulfoxides in high-performance liquid chromatography with cellulose-based chiral selectors using methanol and methanol-water mixtures as mobile phases. Shedania Z; Kakava R; Volonterio A; Farkas T; Chankvetadze B J Chromatogr A; 2018 Jul; 1557():62-74. PubMed ID: 29748092 [TBL] [Abstract][Full Text] [Related]
38. Chiral recognition: design and preparation of chiral stationary phases using selectors derived from ugi multicomponent condensation reactions and a combinatorial approach. Brahmachary E; Ling FH; Svec F; Fréchet JM J Comb Chem; 2003; 5(4):441-50. PubMed ID: 12857112 [TBL] [Abstract][Full Text] [Related]
39. Discrimination of enantiomers based on LSPR biosensors fabricated with weak enantioselective and nonselective receptors. Guo L; Wang D; Xu Y; Qiu B; Lin Z; Dai H; Yang HH; Chen G Biosens Bioelectron; 2013 Sep; 47():199-205. PubMed ID: 23578974 [TBL] [Abstract][Full Text] [Related]
40. Fast generic chiral separation strategies using electrophoretic and liquid chromatographic techniques. Ates H; Mangelings D; Vander Heyden Y J Pharm Biomed Anal; 2008 Sep; 48(2):288-94. PubMed ID: 18242912 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]