These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 1567995)

  • 21. Evolutionary dynamics of enzymes.
    Demetrius L
    Protein Eng; 1995 Aug; 8(8):791-800. PubMed ID: 8637848
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Product dependence and bifunctionality compromise the ultrasensitivity of signal transduction cascades.
    Ortega F; Acerenza L; Westerhoff HV; Mas F; Cascante M
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1170-5. PubMed ID: 11830657
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Near-critical phenomena in intracellular metabolite pools.
    Elf J; Paulsson J; Berg OG; Ehrenberg M
    Biophys J; 2003 Jan; 84(1):154-70. PubMed ID: 12524272
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quasi-steady-state kinetics at enzyme and substrate concentrations in excess of the Michaelis-Menten constant.
    Rami Tzafriri A; Edelman ER
    J Theor Biol; 2007 Apr; 245(4):737-48. PubMed ID: 17234216
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isomerization of the free enzyme versus induced fit: effects of steps involving induced fit that bypass enzyme isomerization on flux ratios and countertransport.
    Britton HG
    Biochem J; 1997 Jan; 321 ( Pt 1)(Pt 1):187-99. PubMed ID: 9003418
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Generalized kinetic analysis of ion-driven cotransport systems: II. Random ligand binding as a simple explanation for non-michaelian kinetics.
    Sanders D
    J Membr Biol; 1986; 90(1):67-87. PubMed ID: 2422385
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [DNA-(N4-cytosine)-methyltransferase from Bacillus amyloliquefaciens: kinetic and substrate binding properties].
    Malygin EG; Ovechkina LG; Zinov'ev VV; Lindstrem UM; Reich NO
    Mol Biol (Mosk); 2001; 35(1):42-51. PubMed ID: 11234382
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Steady states and stability in metabolic networks without regulation.
    Ivanov O; van der Schaft A; Weissing FJ
    J Theor Biol; 2016 Jul; 401():78-93. PubMed ID: 26992576
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A kinetic description of sequential, reversible, Michaelis-Menten reactions: practical application of theory to metabolic pathways.
    Brooks SP; Storey KB
    Mol Cell Biochem; 1992 Sep; 115(1):43-8. PubMed ID: 1435764
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Steady state enzyme velocities that are independent of [enzyme]: an important behavior in many membrane and particle-bound states.
    Nelsestuen GL; Martinez MB
    Biochemistry; 1997 Jul; 36(30):9081-6. PubMed ID: 9254133
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Substrate inhibition as a cause of oscillations in an open irreversible enzymic reaction S1 + S2 in the presence of E(R,T) leads to S1' + S2'. A mathematical model].
    Kaimachnikov NP; Sel'kov EE
    Biokhimiia; 1977 Apr; 42(4):639-46. PubMed ID: 870087
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The steady-state kinetic mechanism of ATP hydrolysis catalyzed by membrane-bound (Na+ + K+)-ATPase from ox brain. III. A minimal model.
    Plesner IW; Plesner L; Nørby JG; Klodos I
    Biochim Biophys Acta; 1981 May; 643(2):483-94. PubMed ID: 6261818
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enzyme kinetics for a two-step enzymic reaction with comparable initial enzyme-substrate ratios.
    Frenzen CL; Maini PK
    J Math Biol; 1988; 26(6):689-703. PubMed ID: 3230366
    [TBL] [Abstract][Full Text] [Related]  

  • 34. pH dependence of the four individual transitions in the catalytic S-cycle during photosynthetic oxygen evolution.
    Bernát G; Morvaridi F; Feyziyev Y; Styring S
    Biochemistry; 2002 May; 41(18):5830-43. PubMed ID: 11980487
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Yeast orotidine-5'-phosphate decarboxylase: steady-state and pre-steady-state analysis of the kinetic mechanism of substrate decarboxylation.
    Porter DJ; Short SA
    Biochemistry; 2000 Sep; 39(38):11788-800. PubMed ID: 10995247
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mathematical modelling of dynamics and control in metabolic networks. I. On Michaelis-Menten kinetics.
    Palsson BO; Lightfoot EN
    J Theor Biol; 1984 Nov; 111(2):273-302. PubMed ID: 6513572
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of enzyme inhibitory mechanisms from steady-state kinetics.
    Fange D; Lovmar M; Pavlov MY; Ehrenberg M
    Biochimie; 2011 Sep; 93(9):1623-9. PubMed ID: 21689716
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of substrate inhibition kinetics in enzymatic chemical oscillations.
    Shen P; Larter R
    Biophys J; 1994 Oct; 67(4):1414-28. PubMed ID: 7819481
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microscopic diffusion-reaction coupling in steady-state enzyme kinetics.
    Berg OG; Ehrenberg M
    Biophys Chem; 1983 Jan; 17(1):13-28. PubMed ID: 6824760
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Simple kinetic models explaining critical phenomena in enzymatic reactions with isomerization of the enzyme and substrate].
    Gol'dshteĭn BN; Ivanova AN
    Mol Biol (Mosk); 1988; 22(5):1381-92. PubMed ID: 3221858
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.