These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 15679951)

  • 1. Considerations for the future development of virtual technology as a rehabilitation tool.
    Kenyon RV; Leigh J; Keshner EA
    J Neuroeng Rehabil; 2004 Dec; 1(1):13. PubMed ID: 15679951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Networked virtual environments and rehabilitation.
    Kenyon RV; Leigh J
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():4832-5. PubMed ID: 17271393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Postural research and rehabilitation in an immersive virtual environment.
    Keshner EA; Kenyon RV; Dhaher Y
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():4862-5. PubMed ID: 17271401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using immersive technology for postural research and rehabilitation.
    Keshner EA; Kenyon RV
    Assist Technol; 2004; 16(1):54-62. PubMed ID: 15357148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human postural responses to motion of real and virtual visual environments under different support base conditions.
    Mergner T; Schweigart G; Maurer C; Blümle A
    Exp Brain Res; 2005 Dec; 167(4):535-56. PubMed ID: 16132969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virtual Reality as a Therapy Tool for Walking Activities in Pediatric Neurorehabilitation: Usability and User Experience Evaluation.
    Ammann-Reiffer C; Kläy A; Keller U
    JMIR Serious Games; 2022 Jul; 10(3):e38509. PubMed ID: 35834316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postural and spatial orientation driven by virtual reality.
    Keshner EA; Kenyon RV
    Stud Health Technol Inform; 2009; 145():209-28. PubMed ID: 19592796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relationship between postural stability and virtual environment adaptation.
    Reed-Jones RJ; Vallis LA; Reed-Jones JG; Trick LM
    Neurosci Lett; 2008 Apr; 435(3):204-9. PubMed ID: 18359162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time modulation of visual feedback on human full-body movements in a virtual mirror: development and proof-of-concept.
    Roosink M; Robitaille N; McFadyen BJ; Hébert LJ; Jackson PL; Bouyer LJ; Mercier C
    J Neuroeng Rehabil; 2015 Jan; 12(1):2. PubMed ID: 25558785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Examining the Relationship Between Conventional Outcomes and Immersive Balance Task Performance in Service Members With Mild Traumatic Brain Injury.
    Rosen KB; Delpy KB; Pape MM; Kodosky PN; Kruger SE
    Mil Med; 2021 May; 186(5-6):577-586. PubMed ID: 33476371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using virtual reality to augment perception, enhance sensorimotor adaptation, and change our minds.
    Wright WG
    Front Syst Neurosci; 2014; 8():56. PubMed ID: 24782724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and preliminary evaluation of a novel low cost VR-based upper limb stroke rehabilitation platform using Wii technology.
    Tsekleves E; Paraskevopoulos IT; Warland A; Kilbride C
    Disabil Rehabil Assist Technol; 2016; 11(5):413-22. PubMed ID: 25391221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of aperture closure during reach-to-grasp movements in immersive haptic-free virtual reality.
    Mangalam M; Yarossi M; Furmanek MP; Tunik E
    Exp Brain Res; 2021 May; 239(5):1651-1665. PubMed ID: 33774688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiological tele-immersion for next generation networks.
    Ai Z; Dech F; Rasmussen M; Silverstein JC
    Stud Health Technol Inform; 2000; 70():4-9. PubMed ID: 10977581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Locomotor rehabilitation in a complex virtual environment.
    Fung J; Malouin F; McFadyen BJ; Comeau F; Lamontagne A; Chapdelaine S; Beaudoin C; Laurendeau D; Hughey L; Richards CL
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():4859-61. PubMed ID: 17271400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pairing virtual reality with dynamic posturography serves to differentiate between patients experiencing visual vertigo.
    Keshner EA; Streepey J; Dhaher Y; Hain T
    J Neuroeng Rehabil; 2007 Jul; 4():24. PubMed ID: 17620142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive immersive Virtual Environments as a treatment for depersonalization disorder.
    Patrikelis P; Konstantakopoulos G; Messinis L; Alexoudi A; Stefanatou M; Nasios G; Gatzonis S
    Psychiatriki; 2021 Dec; 32(4):317-327. PubMed ID: 34390559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contextual sensory integration training via head mounted display for individuals with vestibular disorders: a feasibility study.
    Lubetzky AV; Kelly J; Wang Z; Gospodarek M; Fu G; Sutera J; Hujsak BD
    Disabil Rehabil Assist Technol; 2022 Jan; 17(1):74-84. PubMed ID: 32421374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.