BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 15680220)

  • 21. Oxidatively modified calmodulin binds to the plasma membrane Ca-ATPase in a nonproductive and conformationally disordered complex.
    Gao J; Yao Y; Squier TC
    Biophys J; 2001 Apr; 80(4):1791-801. PubMed ID: 11259292
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-molecule dynamics reveal an altered conformation for the autoinhibitory domain of plasma membrane Ca(2+)-ATPase bound to oxidatively modified calmodulin.
    Osborn KD; Bartlett RK; Mandal A; Zaidi A; Urbauer RJ; Urbauer JL; Galeva N; Williams TD; Johnson CK
    Biochemistry; 2004 Oct; 43(40):12937-44. PubMed ID: 15461467
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of thrombosis and vascular function by protein methionine oxidation.
    Gu SX; Stevens JW; Lentz SR
    Blood; 2015 Jun; 125(25):3851-9. PubMed ID: 25900980
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Redox regulation of methionine in calmodulin affects the activity levels of senescence-related transcription factors in litchi.
    Jiang G; Xiao L; Yan H; Zhang D; Wu F; Liu X; Su X; Dong X; Wang J; Duan X; Jiang Y
    Biochim Biophys Acta Gen Subj; 2017 May; 1861(5 Pt A):1140-1151. PubMed ID: 28188859
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Calorimetry and mass spectrometry study of oxidized calmodulin interaction with target and differential repair by methionine sulfoxide reductases.
    Tsvetkov PO; Ezraty B; Mitchell JK; Devred F; Peyrot V; Derrick PJ; Barras F; Makarov AA; Lafitte D
    Biochimie; 2005 May; 87(5):473-80. PubMed ID: 15820754
    [TBL] [Abstract][Full Text] [Related]  

  • 26. N-terminal and C-terminal domains of calmodulin mediate FADD and TRADD interaction.
    Papoff G; Trivieri N; Marsilio S; Crielesi R; Lalli C; Castellani L; Balog EM; Ruberti G
    PLoS One; 2015; 10(2):e0116251. PubMed ID: 25643035
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Activation of constitutive nitric oxide synthases by oxidized calmodulin mutants.
    Montgomery HJ; Bartlett R; Perdicakis B; Jervis E; Squier TC; Guillemette JG
    Biochemistry; 2003 Jul; 42(25):7759-68. PubMed ID: 12820885
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stereospecific oxidation of calmodulin by methionine sulfoxide reductase A.
    Lim JC; Kim G; Levine RL
    Free Radic Biol Med; 2013 Aug; 61():257-64. PubMed ID: 23583331
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Methionine residues around phosphorylation sites are preferentially oxidized in vivo under stress conditions.
    Veredas FJ; Cantón FR; Aledo JC
    Sci Rep; 2017 Jan; 7():40403. PubMed ID: 28079140
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation.
    Erickson JR; Joiner ML; Guan X; Kutschke W; Yang J; Oddis CV; Bartlett RK; Lowe JS; O'Donnell SE; Aykin-Burns N; Zimmerman MC; Zimmerman K; Ham AJ; Weiss RM; Spitz DR; Shea MA; Colbran RJ; Mohler PJ; Anderson ME
    Cell; 2008 May; 133(3):462-74. PubMed ID: 18455987
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selective nitration of Tyr99 in calmodulin as a marker of cellular conditions of oxidative stress.
    Smallwood HS; Galeva NA; Bartlett RK; Urbauer RJ; Williams TD; Urbauer JL; Squier TC
    Chem Res Toxicol; 2003 Jan; 16(1):95-102. PubMed ID: 12693036
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unique methionine-aromatic interactions govern the calmodulin redox sensor.
    Walgenbach DG; Gregory AJ; Klein JC
    Biochem Biophys Res Commun; 2018 Oct; 505(1):236-241. PubMed ID: 30243720
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oxidation of calmodulin alters activation and regulation of CaMKII.
    Robison AJ; Winder DG; Colbran RJ; Bartlett RK
    Biochem Biophys Res Commun; 2007 Apr; 356(1):97-101. PubMed ID: 17343827
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Loss of conformational stability in calmodulin upon methionine oxidation.
    Gao J; Yin DH; Yao Y; Sun H; Qin Z; Schöneich C; Williams TD; Squier TC
    Biophys J; 1998 Mar; 74(3):1115-34. PubMed ID: 9512014
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Calmodulin involvement in stress-activated nuclear localization of albumin in JB6 epithelial cells.
    Weber TJ; Negash S; Smallwood HS; Ramos KS; Thrall BD; Squier TC
    Biochemistry; 2004 Jun; 43(23):7443-50. PubMed ID: 15182187
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of a denitrase activity against calmodulin in activated macrophages using high-field liquid chromatography--FTICR mass spectrometry.
    Smallwood HS; Lourette NM; Boschek CB; Bigelow DJ; Smith RD; Pasa-Tolić L; Squier TC
    Biochemistry; 2007 Sep; 46(37):10498-505. PubMed ID: 17711305
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Convergent signaling pathways--interaction between methionine oxidation and serine/threonine/tyrosine O-phosphorylation.
    Rao RS; Møller IM; Thelen JJ; Miernyk JA
    Cell Stress Chaperones; 2015 Jan; 20(1):15-21. PubMed ID: 25238876
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Origin and evolution of the protein-repairing enzymes methionine sulphoxide reductases.
    Zhang XH; Weissbach H
    Biol Rev Camb Philos Soc; 2008 Aug; 83(3):249-57. PubMed ID: 18557976
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid method for quantifying the extent of methionine oxidation in intact calmodulin.
    Galeva NA; Esch SW; Williams TD; Markille LM; Squier TC
    J Am Soc Mass Spectrom; 2005 Sep; 16(9):1470-1480. PubMed ID: 16023363
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Methionine oxidation and aging.
    Stadtman ER; Van Remmen H; Richardson A; Wehr NB; Levine RL
    Biochim Biophys Acta; 2005 Jan; 1703(2):135-40. PubMed ID: 15680221
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.