These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 15680244)

  • 1. Formation of a misfolded conformation during refolding of HRPA1 in the presence of calcium.
    Carvalho AS; Neves-Petersen MT; Petersen SB; Aires-Barros MR; Pinho e Melo E
    Biochim Biophys Acta; 2005 Feb; 1747(1):99-107. PubMed ID: 15680244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational states of HRPA1 induced by thermal unfolding: effect of low molecular weight solutes.
    Carvalho AS; Santos AM; Neves-Petersen MT; Petersen SB; Aires-Barros MR; e Melo EP
    Biopolymers; 2004 Oct; 75(2):173-86. PubMed ID: 15356871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heme and pH-dependent stability of an anionic horseradish peroxidase.
    Carvalho AS; Melo EP; Ferreira BS; Neves-Petersen MT; Petersen SB; Aires-Barros MR
    Arch Biochem Biophys; 2003 Jul; 415(2):257-67. PubMed ID: 12831850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational states in denaturants of cytochrome c and horseradish peroxidases examined by fluorescence and circular dichroism.
    Tsaprailis G; Chan DW; English AM
    Biochemistry; 1998 Feb; 37(7):2004-16. PubMed ID: 9485327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A step towards understanding the folding mechanism of horseradish peroxidase. Tryptophan fluorescence and circular dichroism equilibrium studies.
    Pappa HS; Cass AE
    Eur J Biochem; 1993 Feb; 212(1):227-35. PubMed ID: 8444158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and conformational stability of horseradish peroxidase: effect of temperature and pH.
    Chattopadhyay K; Mazumdar S
    Biochemistry; 2000 Jan; 39(1):263-70. PubMed ID: 10625502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Folding of horse cytochrome c in the reduced state.
    Bhuyan AK; Udgaonkar JB
    J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the folding and unfolding reactions of single-chain monellin: evidence for multiple intermediates and competing pathways.
    Patra AK; Udgaonkar JB
    Biochemistry; 2007 Oct; 46(42):11727-43. PubMed ID: 17902706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ca(II)- and Tb(III)-induced stabilization and refolding of anticoagulation factor I from the venom of Agkistrodon acutus.
    Xu X; Liu Q; Yu H; Xie Y
    Protein Sci; 2002 Apr; 11(4):944-56. PubMed ID: 11910037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of protoporphyrin IX in the heme pocket of horseradish peroxidase.
    Brunet JE; Pulgar M
    Biochim Biophys Acta; 1993 Nov; 1203(1):171-4. PubMed ID: 8218388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the use of iron octa-alkylporphyrins as models for protoporphyrin IX-containing heme systems in studies employing magnetic circular dichroism spectroscopy.
    Dawson JH; Kadkhodayan S; Zhuang C; Sono M
    J Inorg Biochem; 1992 Feb; 45(3):179-92. PubMed ID: 1634892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time refolding studies of 6-19F-tryptophan labeled Escherichia coli dihydrofolate reductase using stopped-flow NMR spectroscopy.
    Hoeltzli SD; Frieden C
    Biochemistry; 1996 Dec; 35(51):16843-51. PubMed ID: 8988023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The conformational manifold of ferricytochrome c explored by visible and far-UV electronic circular dichroism spectroscopy.
    Hagarman A; Duitch L; Schweitzer-Stenner R
    Biochemistry; 2008 Sep; 47(36):9667-77. PubMed ID: 18702508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural analyses combined with small-angle X-ray scattering reveals that the retention of heme is critical for maintaining the structure of horseradish peroxidase under denaturing conditions.
    Cha HJ; Jang DS; Jin KS; Choi KY
    Amino Acids; 2017 Apr; 49(4):715-723. PubMed ID: 28144743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The charge transfer band in horseradish peroxidase correlates with heme in-plane distortions induced by calcium removal.
    Laberge M; Szigeti K; Fidy J
    Biopolymers; 2004 May-Jun 5; 74(1-2):41-5. PubMed ID: 15137091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure of horseradish peroxidase C characterized as a molten globule state after Ca(2+) depletion.
    Szigeti K; Smeller L; Osváth S; Majer Z; Fidy J
    Biochim Biophys Acta; 2008 Dec; 1784(12):1965-74. PubMed ID: 18805513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unfolding and pH studies on manganese peroxidase: role of heme and calcium on secondary structure stability.
    Banci L; Bartalesi I; Ciofi-Baffoni S; Tien M
    Biopolymers; 2003; 72(1):38-47. PubMed ID: 12400090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Equilibrium and kinetics of the folding of equine lysozyme studied by circular dichroism spectroscopy.
    Mizuguchi M; Arai M; Ke Y; Nitta K; Kuwajima K
    J Mol Biol; 1998; 283(1):265-77. PubMed ID: 9761689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Refolding of [6-19F]tryptophan-labeled Escherichia coli dihydrofolate reductase in the presence of ligand: a stopped-flow NMR spectroscopy study.
    Hoeltzli SD; Frieden C
    Biochemistry; 1998 Jan; 37(1):387-98. PubMed ID: 9425060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of molten globule state of cytochrome c at alkaline, native and acidic pH induced by butanol and SDS.
    Naeem A; Khan RH
    Int J Biochem Cell Biol; 2004 Nov; 36(11):2281-92. PubMed ID: 15313473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.