BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 15680348)

  • 1. Transcriptional control of glial cell development in Drosophila.
    Jones BW
    Dev Biol; 2005 Feb; 278(2):265-73. PubMed ID: 15680348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Positive autoregulation of the glial promoting factor glide/gcm.
    Miller AA; Bernardoni R; Giangrande A
    EMBO J; 1998 Nov; 17(21):6316-26. PubMed ID: 9799239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression profiling of glial genes during Drosophila embryogenesis.
    Altenhein B; Becker A; Busold C; Beckmann B; Hoheisel JD; Technau GM
    Dev Biol; 2006 Aug; 296(2):545-60. PubMed ID: 16762338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Segregation of postembryonic neuronal and glial lineages inferred from a mosaic analysis of the Drosophila larval brain.
    Colonques J; Ceron J; Tejedor FJ
    Mech Dev; 2007 May; 124(5):327-40. PubMed ID: 17344035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurogenic role of Gcm transcription factors is conserved in chicken spinal cord.
    Soustelle L; Trousse F; Jacques C; Ceron J; Cochard P; Soula C; Giangrande A
    Development; 2007 Feb; 134(3):625-34. PubMed ID: 17215311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sloppy paired 1/2 regulate glial cell fates by inhibiting Gcm function.
    Mondal S; Ivanchuk SM; Rutka JT; Boulianne GL
    Glia; 2007 Feb; 55(3):282-93. PubMed ID: 17091489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glial cell development in the Drosophila embryo.
    Jones BW
    Bioessays; 2001 Oct; 23(10):877-87. PubMed ID: 11598955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional regulation of the Drosophila glial gene repo.
    Lee BP; Jones BW
    Mech Dev; 2005 Jun; 122(6):849-62. PubMed ID: 15939231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The potential to induce glial differentiation is conserved between Drosophila and mammalian glial cells missing genes.
    Iwasaki Y; Hosoya T; Takebayashi H; Ogawa Y; Hotta Y; Ikenaka K
    Development; 2003 Dec; 130(24):6027-35. PubMed ID: 14573516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subtypes of glial cells in the Drosophila embryonic ventral nerve cord as related to lineage and gene expression.
    Beckervordersandforth RM; Rickert C; Altenhein B; Technau GM
    Mech Dev; 2008; 125(5-6):542-57. PubMed ID: 18296030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gcm/Glide-dependent conversion into glia depends on neural stem cell age, but not on division, triggering a chromatin signature that is conserved in vertebrate glia.
    Flici H; Erkosar B; Komonyi O; Karatas OF; Laneve P; Giangrande A
    Development; 2011 Oct; 138(19):4167-78. PubMed ID: 21852399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The tumor suppressor, vitamin D3 up-regulated protein 1 (VDUP1), functions downstream of REPO during Drosophila gliogenesis.
    Mandalaywala NV; Chang S; Snyder RG; Levendusky MC; Voigt JM; Dearborn RE
    Dev Biol; 2008 Mar; 315(2):489-504. PubMed ID: 18262515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel role of the glial fate determinant glial cells missing in hematopoiesis.
    Jacques C; Soustelle L; Nagy I; Diebold C; Giangrande A
    Int J Dev Biol; 2009; 53(7):1013-22. PubMed ID: 19598118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional control of glial and blood cell development in Drosophila: cis-regulatory elements of glial cells missing.
    Jones BW; Abeysekera M; Galinska J; Jolicoeur EM
    Dev Biol; 2004 Feb; 266(2):374-87. PubMed ID: 14738884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gliogenesis depends on glide/gcm through asymmetric division of neuroglioblasts.
    Bernardoni R; Kammerer M; Vonesch JL; Giangrande A
    Dev Biol; 1999 Dec; 216(1):265-75. PubMed ID: 10588877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of gcm RNA stability is necessary for proper glial cell fate acquisition.
    Soustelle L; Roy N; Ragone G; Giangrande A
    Mol Cell Neurosci; 2008 Apr; 37(4):657-62. PubMed ID: 18313940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gliogenesis in Drosophila: genome-wide analysis of downstream genes of glial cells missing in the embryonic nervous system.
    Egger B; Leemans R; Loop T; Kammermeier L; Fan Y; Radimerski T; Strahm MC; Certa U; Reichert H
    Development; 2002 Jul; 129(14):3295-309. PubMed ID: 12091301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multipotent neural stem cells generate glial cells of the central complex through transit amplifying intermediate progenitors in Drosophila brain development.
    Viktorin G; Riebli N; Popkova A; Giangrande A; Reichert H
    Dev Biol; 2011 Aug; 356(2):553-65. PubMed ID: 21708145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of cis-regulatory elements controlling repo transcription in Drosophila melanogaster.
    Johnson RW; Wood JL; Jones BW
    Gene; 2012 Jan; 492(1):167-76. PubMed ID: 22051777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ciliary neurotrophic factor-mediated signaling regulates neuronal versus glial differentiation of retinal stem cells/progenitors by concentration-dependent recruitment of mitogen-activated protein kinase and Janus kinase-signal transducer and activator of transcription pathways in conjunction with Notch signaling.
    Bhattacharya S; Das AV; Mallya KB; Ahmad I
    Stem Cells; 2008 Oct; 26(10):2611-24. PubMed ID: 18669911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.