These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 15680534)
1. Influence of dobutamine on the variables of systemic haemodynamics, metabolism, and intestinal perfusion after cardiopulmonary resuscitation in the rat. Studer W; Wu X; Siegemund M; Marsch S; Seeberger M; Filipovic M Resuscitation; 2005 Feb; 64(2):227-32. PubMed ID: 15680534 [TBL] [Abstract][Full Text] [Related]
2. Levosimendan improves postresuscitation outcomes in a rat model of CPR. Huang L; Weil MH; Sun S; Cammarata G; Cao L; Tang W J Lab Clin Med; 2005 Nov; 146(5):256-61. PubMed ID: 16242524 [TBL] [Abstract][Full Text] [Related]
3. Effect of nitric oxide synthase modulation on resuscitation success in a swine ventricular fibrillation cardiac arrest model. Zhang Y; Boddicker KA; Rhee BJ; Davies LR; Kerber RE Resuscitation; 2005 Oct; 67(1):127-34. PubMed ID: 16039037 [TBL] [Abstract][Full Text] [Related]
4. Mechanism by which activation of delta-opioid receptor reduces the severity of postresuscitation myocardial dysfunction. Fang X; Tang W; Sun S; Huang L; Huang Z; Weil MH Crit Care Med; 2006 Oct; 34(10):2607-12. PubMed ID: 16775573 [TBL] [Abstract][Full Text] [Related]
5. Initial defibrillation versus initial chest compression in a 4-minute ventricular fibrillation canine model of cardiac arrest. Wang YL; Zhong JQ; Tao W; Hou XM; Meng XL; Zhang Y Crit Care Med; 2009 Jul; 37(7):2250-2. PubMed ID: 19455026 [TBL] [Abstract][Full Text] [Related]
6. Brain tissue oxygen pressure and cerebral metabolism in an animal model of cardiac arrest and cardiopulmonary resuscitation. Cavus E; Bein B; Dörges V; Stadlbauer KH; Wenzel V; Steinfath M; Hanss R; Scholz J Resuscitation; 2006 Oct; 71(1):97-106. PubMed ID: 16942830 [TBL] [Abstract][Full Text] [Related]
7. Is all ventricular fibrillation the same? A comparison of ischemically induced with electrically induced ventricular fibrillation in a porcine cardiac arrest and resuscitation model. Niemann JT; Rosborough JP; Youngquist S; Thomas J; Lewis RJ Crit Care Med; 2007 May; 35(5):1356-61. PubMed ID: 17414084 [TBL] [Abstract][Full Text] [Related]
8. Minimal interruption of cardiopulmonary resuscitation for a single shock as mandated by automated external defibrillations does not compromise outcomes in a porcine model of cardiac arrest and resuscitation. Ristagno G; Tang W; Russell JK; Jorgenson D; Wang H; Sun S; Weil MH Crit Care Med; 2008 Nov; 36(11):3048-53. PubMed ID: 18824916 [TBL] [Abstract][Full Text] [Related]
10. Optimal dosing of dobutamine for treating post-resuscitation left ventricular dysfunction. Vasquez A; Kern KB; Hilwig RW; Heidenreich J; Berg RA; Ewy GA Resuscitation; 2004 May; 61(2):199-207. PubMed ID: 15135197 [TBL] [Abstract][Full Text] [Related]
11. Microcirculation during cardiac arrest and resuscitation. Fries M; Weil MH; Chang YT; Castillo C; Tang W Crit Care Med; 2006 Dec; 34(12 Suppl):S454-7. PubMed ID: 17114977 [TBL] [Abstract][Full Text] [Related]
12. Positive end-expiratory pressure improves survival in a rodent model of cardiopulmonary resuscitation using high-dose epinephrine. McCaul C; Kornecki A; Engelberts D; McNamara P; Kavanagh BP Anesth Analg; 2009 Oct; 109(4):1202-8. PubMed ID: 19762750 [TBL] [Abstract][Full Text] [Related]
13. Resuscitation from cardiac arrest with adrenaline/epinephrine or vasopressin: effects on intestinal mucosal tonometer pCO(2) during the postresuscitation period in rats. Studer W; Wu X; Siegemund M; Seeberger M Resuscitation; 2002 May; 53(2):201-7. PubMed ID: 12009224 [TBL] [Abstract][Full Text] [Related]
14. A new device producing manual sternal compression with thoracic constraint for cardiopulmonary resuscitation. Niemann JT; Rosborough JP; Kassabian L; Salami B Resuscitation; 2006 May; 69(2):295-301. PubMed ID: 16457933 [TBL] [Abstract][Full Text] [Related]
15. Optimal timing for electrical defibrillation after prolonged untreated ventricular fibrillation. Kolarova J; Ayoub IM; Yi Z; Gazmuri RJ Crit Care Med; 2003 Jul; 31(7):2022-8. PubMed ID: 12847399 [TBL] [Abstract][Full Text] [Related]
16. Effects of incomplete chest wall decompression during cardiopulmonary resuscitation on coronary and cerebral perfusion pressures in a porcine model of cardiac arrest. Yannopoulos D; McKnite S; Aufderheide TP; Sigurdsson G; Pirrallo RG; Benditt D; Lurie KG Resuscitation; 2005 Mar; 64(3):363-72. PubMed ID: 15733767 [TBL] [Abstract][Full Text] [Related]
17. Augmentation of tissue perfusion by a novel compression device increases neurologically intact survival in a porcine model of prolonged cardiac arrest. Ikeno F; Kaneda H; Hongo Y; Sakanoue Y; Nolasco C; Emami S; Lyons J; Rezaee M Resuscitation; 2006 Jan; 68(1):109-18. PubMed ID: 16325982 [TBL] [Abstract][Full Text] [Related]
18. Prearrest administration of low-molecular-weight heparin in porcine cardiac arrest: hemodynamic effects and resuscitability. Pytte M; Bendz B; Kramer-Johansen J; Eriksen M; Strømme TA; Eilevstjønn J; Brosstad F; Sunde K Crit Care Med; 2008 Mar; 36(3):881-6. PubMed ID: 18431276 [TBL] [Abstract][Full Text] [Related]
19. Revised resuscitation guidelines: adrenaline versus adrenaline/vasopressin in a pig model of cardiopulmonary resuscitation--a randomised, controlled trial. Meybohm P; Cavus E; Dörges V; Steinfath M; Sibbert L; Wenzel V; Scholz J; Bein B Resuscitation; 2007 Nov; 75(2):380-8. PubMed ID: 17583413 [TBL] [Abstract][Full Text] [Related]
20. Levosimendan improves the initial outcome of cardiopulmonary resuscitation in a swine model of cardiac arrest. Koudouna E; Xanthos T; Bassiakou E; Goulas S; Lelovas P; Papadimitriou D; Tsirikos N; Papadimitriou L Acta Anaesthesiol Scand; 2007 Sep; 51(8):1123-9. PubMed ID: 17697310 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]