These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 15680591)

  • 1. Isomerisation of aldoses in pyridine in the presence of aluminium oxide.
    Ekeberg D; Morgenlie S; Stenstrøm Y
    Carbohydr Res; 2005 Feb; 340(3):373-7. PubMed ID: 15680591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aldose-ketose interconversion in pyridine in the presence of aluminium oxide.
    Ekeberg D; Morgenlie S; Stenstrøm Y
    Carbohydr Res; 2007 Oct; 342(14):1992-7. PubMed ID: 17606255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Base catalysed isomerisation of aldoses of the arabino and lyxo series in the presence of aluminate.
    Ekeberg D; Morgenlie S; Stenstrøm Y
    Carbohydr Res; 2002 Apr; 337(9):779-86. PubMed ID: 11996831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a chemical strategy to produce rare aldohexoses from ketohexoses using 2-aminopyridine.
    Hasehira K; Miyanishi N; Sumiyoshi W; Hirabayashi J; Nakakita S
    Carbohydr Res; 2011 Dec; 346(17):2693-8. PubMed ID: 22055543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on enolization of aldehydo-aldose derivatives.
    Eitelman SJ; Horton D
    Carbohydr Res; 2006 Nov; 341(16):2658-68. PubMed ID: 16982040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous Enantioseparation of Aldohexoses and Aldopentoses Derivatized With L-Tryptophanamide by Reversed Phase HPLC Using Butylboronic Acid as a Complexation Reagent of Monosaccharides.
    Shou M; Terashima H; Aizawa S; Taga A; Yamamoto A; Kodama S
    Chirality; 2015 Jul; 27(7):417-21. PubMed ID: 25994510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate-dependent chemoselective aldose-aldose and aldose-ketose isomerizations of carbohydrates promoted by a combination of calcium ion and monoamines.
    Tanase T; Takei T; Hidai M; Yano S
    Carbohydr Res; 2001 Jul; 333(4):303-12. PubMed ID: 11454337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel substrates of a ribose-5-phosphate isomerase from Clostridium thermocellum.
    Yoon RY; Yeom SJ; Kim HJ; Oh DK
    J Biotechnol; 2009 Jan; 139(1):26-32. PubMed ID: 18984017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamics of the interaction of RbCl with some monosaccharides (D-glucose, D-galactose, D-xylose, and D-arabinose) in aqueous solutions at 298.15K.
    Jiang Y; Hu M; Li S; Wang J; Zhuo K
    Carbohydr Res; 2006 Feb; 341(2):262-9. PubMed ID: 16330007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Convenient preparation of 3,5-anhydro- and 2,5-anhydropentofuranosides, and 5,6-anhydro-D-glucofuranose by use of the Mitsunobu reaction.
    Schulze O; Voss J; Adiwidjaja G
    Carbohydr Res; 2005 Mar; 340(4):587-95. PubMed ID: 15721328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic Isomerization of Biomass-Derived Aldoses: A Review.
    Delidovich I; Palkovits R
    ChemSusChem; 2016 Mar; 9(6):547-61. PubMed ID: 26948404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Chromatographic study of the aldose-ketose interconversion of various sugrars and reducing disaccharides. Comparison between the action of pyridine and that of alkalies].
    COURTOIS JE; de GRANDCHAMP-CHAUDUN ; LE DIZET P
    Ann Pharm Fr; 1960 Oct; 18():689-97. PubMed ID: 13696002
    [No Abstract]   [Full Text] [Related]  

  • 13. Efficient Conversion of D-Glucose to D-Fructose in the Presence of Organogermanium Compounds.
    Nagasawa T; Sato K; Shimada Y; Kasumi T
    J Appl Glycosci (1999); 2016; 63(2):39-45. PubMed ID: 34354481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel substrate specificity of D-arabinose isomerase from Klebsiella pneumoniae and its application to production of D-altrose from D-psicose.
    Menavuvu BT; Poonperm W; Takeda K; Morimoto K; Granström TB; Takada G; Izumori K
    J Biosci Bioeng; 2006 Nov; 102(5):436-41. PubMed ID: 17189171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhodium-catalyzed decarbonylation of aldoses.
    Monrad RN; Madsen R
    J Org Chem; 2007 Dec; 72(25):9782-5. PubMed ID: 17979290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Lobry de Bruyn-Alberda van Ekenstein transformation.
    SPECK JC
    Adv Carbohydr Chem; 1958; 13():63-103. PubMed ID: 13605969
    [No Abstract]   [Full Text] [Related]  

  • 17. General methods for enriching aldoses with oxygen isotopes.
    Clark EL; Barker R
    Carbohydr Res; 1986 Oct; 153(2):253-61. PubMed ID: 3779695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monosaccharides as silicon chelators: pentacoordinate bis(diolato)(phenyl)silicates with the cis-furanose isomers of common pentoses and hexoses.
    Klüfers P; Kopp F; Vogt M
    Chemistry; 2004 Sep; 10(18):4538-45. PubMed ID: 15378633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bidentate palladium(II) chelation by the common aldoses.
    Arendt Y; Labisch O; Klüfers P
    Carbohydr Res; 2009 Jul; 344(10):1213-24. PubMed ID: 19508913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of beta-(2-chloroaroyl)thioacetanilide in synthesis(III): an efficient three-component synthesis of thiochromeno[2,3-b]pyridines catalyzed by KF/neutral Al2O3 co-operated with PEG 6000 under microwave irradiation.
    Wen L; Ji C; Li Y; Li M
    J Comb Chem; 2009; 11(5):799-805. PubMed ID: 19630426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.