These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
381 related articles for article (PubMed ID: 15680987)
1. Biosynthesis of mono- and sesquiterpenes in carrot roots and leaves (Daucus carota L.): metabolic cross talk of cytosolic mevalonate and plastidial methylerythritol phosphate pathways. Hampel D; Mosandl A; Wüst M Phytochemistry; 2005 Feb; 66(3):305-11. PubMed ID: 15680987 [TBL] [Abstract][Full Text] [Related]
2. Biosynthesis of mono- and sesquiterpenes in strawberry fruits and foliage: 2H labeling studies. Hampel D; Mosandl A; Wüst M J Agric Food Chem; 2006 Feb; 54(4):1473-8. PubMed ID: 16478276 [TBL] [Abstract][Full Text] [Related]
3. Biosynthesis of monoterpenes and norisoprenoids in raspberry fruits (Rubus idaeus L.): the role of cytosolic mevalonate and plastidial methylerythritol phosphate pathway. Hampel D; Swatski A; Mosandl A; Wüst M J Agric Food Chem; 2007 Oct; 55(22):9296-304. PubMed ID: 17907775 [TBL] [Abstract][Full Text] [Related]
4. Methylerythritol and mevalonate pathway contributions to biosynthesis of mono-, sesqui-, and diterpenes in glandular trichomes and leaves of Stevia rebaudiana Bertoni. Wölwer-Rieck U; May B; Lankes C; Wüst M J Agric Food Chem; 2014 Mar; 62(11):2428-35. PubMed ID: 24579920 [TBL] [Abstract][Full Text] [Related]
5. Biosynthesis of sesquiterpenes in grape berry exocarp of Vitis vinifera L.: evidence for a transport of farnesyl diphosphate precursors from plastids to the cytosol. May B; Lange BM; Wüst M Phytochemistry; 2013 Nov; 95():135-44. PubMed ID: 23954075 [TBL] [Abstract][Full Text] [Related]
6. Redirection of metabolite biosynthesis from hydroxybenzoates to volatile terpenoids in green hairy roots of Daucus carota. Mukherjee C; Samanta T; Mitra A Planta; 2016 Feb; 243(2):305-20. PubMed ID: 26403287 [TBL] [Abstract][Full Text] [Related]
7. Biogenetic studies in Syringa vulgaris L.: synthesis and bioconversion of deuterium-labeled precursors into lilac aldehydes and lilac alcohols. Kreck M; Püschel S; Wüst M; Mosandl A J Agric Food Chem; 2003 Jan; 51(2):463-9. PubMed ID: 12517111 [TBL] [Abstract][Full Text] [Related]
8. Induction of de novo volatile terpene biosynthesis via cytosolic and plastidial pathways by methyl jasmonate in foliage of Vitis vinifera L. Hampel D; Mosandl A; Wüst M J Agric Food Chem; 2005 Apr; 53(7):2652-7. PubMed ID: 15796607 [TBL] [Abstract][Full Text] [Related]
9. The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Dudareva N; Andersson S; Orlova I; Gatto N; Reichelt M; Rhodes D; Boland W; Gershenzon J Proc Natl Acad Sci U S A; 2005 Jan; 102(3):933-8. PubMed ID: 15630092 [TBL] [Abstract][Full Text] [Related]
10. Both methylerythritol phosphate and mevalonate pathways contribute to biosynthesis of each of the major isoprenoid classes in young cotton seedlings. Opitz S; Nes WD; Gershenzon J Phytochemistry; 2014 Feb; 98():110-9. PubMed ID: 24359633 [TBL] [Abstract][Full Text] [Related]
11. Isoprenoid biosynthesis via 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-phosphate (DOXP/MEP) pathway. Wanke M; Skorupinska-Tudek K; Swiezewska E Acta Biochim Pol; 2001; 48(3):663-72. PubMed ID: 11833775 [TBL] [Abstract][Full Text] [Related]
12. Dynamic pathway allocation in early terpenoid biosynthesis of stress-induced lima bean leaves. Bartram S; Jux A; Gleixner G; Boland W Phytochemistry; 2006 Aug; 67(15):1661-72. PubMed ID: 16580034 [TBL] [Abstract][Full Text] [Related]
13. Influence of cultivar and harvest year on the volatile profiles of leaves and roots of carrots (Daucus carota spp. sativus Hoffm.). Ulrich D; Nothnagel T; Schulz H J Agric Food Chem; 2015 Apr; 63(13):3348-56. PubMed ID: 25797828 [TBL] [Abstract][Full Text] [Related]
14. Identification and Characterization of Terpene Synthases Potentially Involved in the Formation of Volatile Terpenes in Carrot (Daucus carota L.) Roots. Yahyaa M; Tholl D; Cormier G; Jensen R; Simon PW; Ibdah M J Agric Food Chem; 2015 May; 63(19):4870-8. PubMed ID: 25924989 [TBL] [Abstract][Full Text] [Related]
15. Differential incorporation of 1-deoxy-D-xylulose into (3S)-linalool and geraniol in grape berry exocarp and mesocarp. Luan F; Wüst M Phytochemistry; 2002 Jul; 60(5):451-9. PubMed ID: 12052510 [TBL] [Abstract][Full Text] [Related]
16. Influence of carrot psyllid (Trioza apicalis) feeding or exogenous limonene or methyl jasmonate treatment on composition of carrot (Daucus carota) leaf essential oil and headspace volatiles. Nissinen A; Ibrahim M; Kainulainen P; Tiilikkala K; Holopainen JK J Agric Food Chem; 2005 Nov; 53(22):8631-8. PubMed ID: 16248564 [TBL] [Abstract][Full Text] [Related]
17. Molecular cloning and expression profile analysis of Ginkgo biloba DXS gene encoding 1-deoxy-D-xylulose 5-phosphate synthase, the first committed enzyme of the 2-C-methyl-D-erythritol 4-phosphate pathway. Gong YF; Liao ZH; Guo BH; Sun XF; Tang KX Planta Med; 2006 Mar; 72(4):329-35. PubMed ID: 16557474 [TBL] [Abstract][Full Text] [Related]
18. Biogenetic studies in Syringa vulgaris L.: bioconversion of (18)O(2H)-labeled precursors into lilac aldehydes and lilac alcohols. Burkhardt D; Mosandl A J Agric Food Chem; 2003 Dec; 51(25):7391-5. PubMed ID: 14640589 [TBL] [Abstract][Full Text] [Related]
19. Changes in volatile compounds of carrots (Daucus carota L.) during refrigerated and frozen storage. Kjeldsen F; Christensen LP; Edelenbos M J Agric Food Chem; 2003 Aug; 51(18):5400-7. PubMed ID: 12926889 [TBL] [Abstract][Full Text] [Related]
20. Essential-oil composition of Daucus carota ssp. major (Pastinocello Carrot) and nine different commercial varieties of Daucus carota ssp. sativus fruits. Flamini G; Cosimi E; Cioni PL; Molfetta I; Braca A Chem Biodivers; 2014 Jul; 11(7):1022-33. PubMed ID: 25044588 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]