BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 15681084)

  • 1. Poly(ethylene glycol) hydrogels formed by conjugate addition with controllable swelling, degradation, and release of pharmaceutically active proteins.
    van de Wetering P; Metters AT; Schoenmakers RG; Hubbell JA
    J Control Release; 2005 Feb; 102(3):619-27. PubMed ID: 15681084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(ethylene glycol) methacrylate/dimethacrylate hydrogels for controlled release of hydrophobic drugs.
    Diramio JA; Kisaalita WS; Majetich GF; Shimkus JM
    Biotechnol Prog; 2005; 21(4):1281-8. PubMed ID: 16080712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro and in vivo protein delivery from in situ forming poly(ethylene glycol)-poly(lactide) hydrogels.
    Hiemstra C; Zhong Z; Van Tomme SR; van Steenbergen MJ; Jacobs JJ; Otter WD; Hennink WE; Feijen J
    J Control Release; 2007 Jun; 119(3):320-7. PubMed ID: 17475360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrolytic degradation and protein release studies of thermogelling polyurethane copolymers consisting of poly[(R)-3-hydroxybutyrate], poly(ethylene glycol), and poly(propylene glycol).
    Loh XJ; Goh SH; Li J
    Biomaterials; 2007 Oct; 28(28):4113-23. PubMed ID: 17573109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of poly(ethylene glycol) hydrogels with different network structures for the application of enzyme immobilization.
    Choi D; Lee W; Park J; Koh W
    Biomed Mater Eng; 2008; 18(6):345-56. PubMed ID: 19197111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradative properties and cytocompatibility of a mixed-mode hydrogel containing oligo[poly(ethylene glycol)fumarate] and poly(ethylene glycol)dithiol.
    Brink KS; Yang PJ; Temenoff JS
    Acta Biomater; 2009 Feb; 5(2):570-9. PubMed ID: 18948068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An approach to modulate degradation and mesenchymal stem cell behavior in poly(ethylene glycol) networks.
    Hudalla GA; Eng TS; Murphy WL
    Biomacromolecules; 2008 Mar; 9(3):842-9. PubMed ID: 18288800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sustained release of bee venom peptide from biodegradable thermosensitive PLGA-PEG-PLGA triblock copolymer-based hydrogels in vitro.
    Qiao M; Chen D; Ma X; Hu H
    Pharmazie; 2006 Mar; 61(3):199-202. PubMed ID: 16599259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical and microstructural properties of hybrid poly(ethylene glycol)-soy protein hydrogels for wound dressing applications.
    Snyders R; Shingel KI; Zabeida O; Roberge C; Faure MP; Martinu L; Klemberg-Sapieha JE
    J Biomed Mater Res A; 2007 Oct; 83(1):88-97. PubMed ID: 17380500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of cross-linker chemistry on release kinetics of PEG-co-PGA hydrogels.
    Bencherif SA; Sheehan JA; Hollinger JO; Walker LM; Matyjaszewski K; Washburn NR
    J Biomed Mater Res A; 2009 Jul; 90(1):142-53. PubMed ID: 18491397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapidly in situ forming biodegradable robust hydrogels by combining stereocomplexation and photopolymerization.
    Hiemstra C; Zhou W; Zhong Z; Wouters M; Feijen J
    J Am Chem Soc; 2007 Aug; 129(32):9918-26. PubMed ID: 17645336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Network formation and degradation behavior of hydrogels formed by Michael-type addition reactions.
    Metters A; Hubbell J
    Biomacromolecules; 2005; 6(1):290-301. PubMed ID: 15638532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA delivery from photocrosslinked PEG hydrogels: encapsulation efficiency, release profiles, and DNA quality.
    Quick DJ; Anseth KS
    J Control Release; 2004 Apr; 96(2):341-51. PubMed ID: 15081223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled release of paclitaxel from biodegradable unsaturated poly(ester amide)s/poly(ethylene glycol) diacrylate hydrogels.
    Guo K; Chu CC
    J Biomater Sci Polym Ed; 2007; 18(5):489-504. PubMed ID: 17550654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro release of plasmid DNA from oligo(poly(ethylene glycol) fumarate) hydrogels.
    Kasper FK; Seidlits SK; Tang A; Crowther RS; Carney DH; Barry MA; Mikos AG
    J Control Release; 2005 Jun; 104(3):521-39. PubMed ID: 15911051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein diffusion in photopolymerized poly(ethylene glycol) hydrogel networks.
    Engberg K; Frank CW
    Biomed Mater; 2011 Oct; 6(5):055006. PubMed ID: 21873762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of network structure on the degradation of photo-cross-linked PLA-b-PEG-b-PLA hydrogels.
    Shah NM; Pool MD; Metters AT
    Biomacromolecules; 2006 Nov; 7(11):3171-7. PubMed ID: 17096548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of cyclic acetal based degradable hydrogels.
    Kaihara S; Matsumura S; Fisher JP
    Eur J Pharm Biopharm; 2008 Jan; 68(1):67-73. PubMed ID: 17888640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled release of proteins from degradable poly(ether-ester) multiblock copolymers.
    van Dijkhuizen-Radersma R; Métairie S; Roosma JR; de Groot K; Bezemer JM
    J Control Release; 2005 Jan; 101(1-3):175-86. PubMed ID: 15588903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic compressive loading influences degradation behavior of PEG-PLA hydrogels.
    Nicodemus GD; Shiplet KA; Kaltz SR; Bryant SJ
    Biotechnol Bioeng; 2009 Feb; 102(3):948-59. PubMed ID: 18831003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.