These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 15681227)
21. Inducible De Novo Biosynthesis of Isoflavonoids in Soybean Leaves by Spodoptera litura Derived Elicitors: Tracer Techniques Aided by High Resolution LCMS. Nakata R; Kimura Y; Aoki K; Yoshinaga N; Teraishi M; Okumoto Y; Huffaker A; Schmelz EA; Mori N J Chem Ecol; 2016 Dec; 42(12):1226-1236. PubMed ID: 27826811 [TBL] [Abstract][Full Text] [Related]
22. Enzymatic decomposition of elicitors of plant volatiles in Heliothis virescens and Helicoverpa zea. Mori N; Alborn HT; Teal PE; Tumlinson JH J Insect Physiol; 2001 Jul; 47(7):749-757. PubMed ID: 11356422 [TBL] [Abstract][Full Text] [Related]
23. Effects of feeding Spodoptera littoralis on lima bean leaves. I. Membrane potentials, intracellular calcium variations, oral secretions, and regurgitate components. Maffei M; Bossi S; Spiteller D; Mithöfer A; Boland W Plant Physiol; 2004 Apr; 134(4):1752-62. PubMed ID: 15051862 [TBL] [Abstract][Full Text] [Related]
24. N-(17-Phosphonooxylinolenoyl)glutamine and N-(17-phosphonooxylinoleoyl)glutamine from insect gut: the first backbone-phosphorylated fatty acid derivatives in nature. Spiteller D; Oldham NJ; Boland W J Org Chem; 2004 Feb; 69(4):1104-9. PubMed ID: 14961658 [TBL] [Abstract][Full Text] [Related]
25. Synthesis of the (17R)- and (17S)-isomers of volicitin, an elicitor of plant volatiles contained in the oral secretion of the beet armyworm. Itoh S; Kuwahara S; Hasegawa M; Kodama O Biosci Biotechnol Biochem; 2002 Jul; 66(7):1591-6. PubMed ID: 12224650 [TBL] [Abstract][Full Text] [Related]
26. Protein profiles of the midgut of Spodoptera litura larvae at the sixth instar feeding stage by shotgun ESI-MS approach. Liu J; Zheng S; Liu L; Li L; Feng Q J Proteome Res; 2010 May; 9(5):2117-47. PubMed ID: 20345177 [TBL] [Abstract][Full Text] [Related]
27. Transcriptional activation of Igl, the gene for indole formation in Zea mays: a structure-activity study with elicitor-active N-acyl glutamines from insects. Frey M; Spiteller D; Boland W; Gierl A Phytochemistry; 2004 Apr; 65(8):1047-55. PubMed ID: 15110684 [TBL] [Abstract][Full Text] [Related]
30. An herbivore elicitor activates the gene for indole emission in maize. Frey M; Stettner C; Pare PW; Schmelz EA; Tumlinson JH; Gierl A Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14801-6. PubMed ID: 11106389 [TBL] [Abstract][Full Text] [Related]
31. Spodoptera littoralis detoxifies neurotoxic 3-nitropropanoic acid by conjugation with amino acids. Novoselov A; Becker T; Pauls G; von Reuß SH; Boland W Insect Biochem Mol Biol; 2015 Aug; 63():97-103. PubMed ID: 26092560 [TBL] [Abstract][Full Text] [Related]
32. Compartmentalization of oxidative stress and antioxidant defense in the larval gut of Spodoptera littoralis. Krishnan N; Sehnal F Arch Insect Biochem Physiol; 2006 Sep; 63(1):1-10. PubMed ID: 16921519 [TBL] [Abstract][Full Text] [Related]
33. RNA interference with the allatoregulating neuropeptide genes from the fall armyworm Spodoptera frugiperda and its effects on the JH titer in the hemolymph. Griebler M; Westerlund SA; Hoffmann KH; Meyering-Vos M J Insect Physiol; 2008 Jun; 54(6):997-1007. PubMed ID: 18541256 [TBL] [Abstract][Full Text] [Related]
34. Biochemical crypsis in the avoidance of natural enemies by an insect herbivore. De Moraes CM; Mescher MC Proc Natl Acad Sci U S A; 2004 Jun; 101(24):8993-7. PubMed ID: 15184664 [TBL] [Abstract][Full Text] [Related]
35. Metabolism of thymol and trans-anethole in larvae of Spodoptera litura and Trichoplusia ni (Lepidoptera: Noctuidae). Passreiter CM; Wilson J; Andersen R; Isman MB J Agric Food Chem; 2004 May; 52(9):2549-51. PubMed ID: 15113155 [TBL] [Abstract][Full Text] [Related]
36. Rapid enzymatic isomerization of 12-oxophytodienoic acid in the gut of lepidopteran larvae. Schulze B; Dabrowska P; Boland W Chembiochem; 2007 Jan; 8(2):208-16. PubMed ID: 17195253 [TBL] [Abstract][Full Text] [Related]
37. Plant volatile eliciting FACs in lepidopteran caterpillars, fruit flies, and crickets: a convergent evolution or phylogenetic inheritance? Yoshinaga N; Abe H; Morita S; Yoshida T; Aboshi T; Fukui M; Tumlinson JH; Mori N Front Physiol; 2014; 5():121. PubMed ID: 24744735 [TBL] [Abstract][Full Text] [Related]
38. Antioxidant enzymes in Spodoptera littoralis (Boisduval): are they enhanced to protect gut tissues during oxidative stress? Krishnan N; Kodrík D J Insect Physiol; 2006 Jan; 52(1):11-20. PubMed ID: 16242709 [TBL] [Abstract][Full Text] [Related]
39. Concerted biosynthesis of an insect elicitor of plant volatiles. Paré PW; Alborn HT; Tumlinson JH Proc Natl Acad Sci U S A; 1998 Nov; 95(23):13971-5. PubMed ID: 9811910 [TBL] [Abstract][Full Text] [Related]
40. Nutrient absorption by Aphidius ervi larvae. Caccia S; Leonardi MG; Casartelli M; Grimaldi A; de Eguileor M; Pennacchio F; Giordana B J Insect Physiol; 2005 Nov; 51(11):1183-92. PubMed ID: 16085087 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]