These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 1568127)

  • 1. A search for common patterns in many sequences.
    Roytberg MA
    Comput Appl Biosci; 1992 Feb; 8(1):57-64. PubMed ID: 1568127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient constrained multiple sequence alignment with performance guarantee.
    Chin FY; Ho NL; Lam TW; Wong PW; Chan MY
    Proc IEEE Comput Soc Bioinform Conf; 2003; 2():337-46. PubMed ID: 16452809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting periodic patterns in biological sequences.
    Coward E; Drabløs F
    Bioinformatics; 1998; 14(6):498-507. PubMed ID: 9694988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MulBlast 1.0: a multiple alignment of BLAST output to boost protein sequence similarity analysis.
    Labesse G
    Comput Appl Biosci; 1996 Dec; 12(6):463-7. PubMed ID: 9021263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SCARNA: fast and accurate structural alignment of RNA sequences by matching fixed-length stem fragments.
    Tabei Y; Tsuda K; Kin T; Asai K
    Bioinformatics; 2006 Jul; 22(14):1723-9. PubMed ID: 16690634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The generalised k-Truncated Suffix Tree for time-and space-efficient searches in multiple DNA or protein sequences.
    Schulz MH; Bauer S; Robinson PN
    Int J Bioinform Res Appl; 2008; 4(1):81-95. PubMed ID: 18283030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel method of multiple alignment of biopolymer sequences.
    Brodsky LI; Drachev AL; Leontovich AM; Feranchuk SI
    Biosystems; 1993; 30(1-3):65-79. PubMed ID: 8374082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ADVANCE and ADAM: two algorithms for the analysis of global similarity between homologous informational sequences.
    Torelli A; Robotti CA
    Comput Appl Biosci; 1994 Feb; 10(1):3-5. PubMed ID: 8193952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic programming algorithms for biological sequence comparison.
    Pearson WR; Miller W
    Methods Enzymol; 1992; 210():575-601. PubMed ID: 1584052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ProClust: improved clustering of protein sequences with an extended graph-based approach.
    Pipenbacher P; Schliep A; Schneckener S; Schönhuth A; Schomburg D; Schrader R
    Bioinformatics; 2002; 18 Suppl 2():S182-91. PubMed ID: 12386002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AntiClustal: Multiple Sequence Alignment by antipole clustering and linear approximate 1-median computation.
    Di Pietro C; Di Pietro V; Emmanuele G; Ferro A; Maugeri T; Modica E; Pigola G; Pulvirenti A; Purrello M; Ragusa M; Scalia M; Shasha D; Travali S; Zimmitti V
    Proc IEEE Comput Soc Bioinform Conf; 2003; 2():326-36. PubMed ID: 16452808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An efficient, versatile and scalable pattern growth approach to mine frequent patterns in unaligned protein sequences.
    Ye K; Kosters WA; Ijzerman AP
    Bioinformatics; 2007 Mar; 23(6):687-93. PubMed ID: 17237070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pattern matching of biological sequences with limited storage.
    Gotoh O
    Comput Appl Biosci; 1987 Mar; 3(1):17-20. PubMed ID: 3453210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple DNA and protein sequence alignment based on segment-to-segment comparison.
    Morgenstern B; Dress A; Werner T
    Proc Natl Acad Sci U S A; 1996 Oct; 93(22):12098-103. PubMed ID: 8901539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The 3of5 web application for complex and comprehensive pattern matching in protein sequences.
    Seiler M; Mehrle A; Poustka A; Wiemann S
    BMC Bioinformatics; 2006 Mar; 7():144. PubMed ID: 16542452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compression of Multiple DNA Sequences Using Intra-Sequence and Inter-Sequence Similarities.
    Cheng KO; Wu P; Law NF; Siu WC
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(6):1322-32. PubMed ID: 26671804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A tool for aligning very similar DNA sequences.
    Chao KM; Zhang J; Ostell J; Miller W
    Comput Appl Biosci; 1997 Feb; 13(1):75-80. PubMed ID: 9088712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dotplot program for the Atari ST, for the analysis of DNA and protein sequences.
    Karreman C
    Comput Appl Biosci; 1992 Feb; 8(1):75-7. PubMed ID: 1568130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local multiple alignment by consensus matrix.
    Alexandrov NN
    Comput Appl Biosci; 1992 Aug; 8(4):339-45. PubMed ID: 1498689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A survey of multiple sequence comparison methods.
    Chan SC; Wong AK; Chiu DK
    Bull Math Biol; 1992 Jul; 54(4):563-98. PubMed ID: 1591533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.