BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 15681662)

  • 21. Structure and organization of the mitochondrial genome of the unicellular red alga Cyanidioschyzon merolae deduced from the complete nucleotide sequence.
    Ohta N; Sato N; Kuroiwa T
    Nucleic Acids Res; 1998 Nov; 26(22):5190-8. PubMed ID: 9801318
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of centromere regions in chromosomes of a unicellular red alga, Cyanidioschyzon merolae.
    Kanesaki Y; Imamura S; Matsuzaki M; Tanaka K
    FEBS Lett; 2015 May; 589(11):1219-24. PubMed ID: 25896021
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids.
    Nozaki H; Matsuzaki M; Takahara M; Misumi O; Kuroiwa H; Hasegawa M; Shin-i T; Kohara Y; Ogasawara N; Kuroiwa T
    J Mol Evol; 2003 Apr; 56(4):485-97. PubMed ID: 12664168
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microarray profiling of plastid gene expression in a unicellular red alga, Cyanidioschyzon merolae.
    Minoda A; Nagasawa K; Hanaoka M; Horiuchi M; Takahashi H; Tanaka K
    Plant Mol Biol; 2005 Oct; 59(3):375-85. PubMed ID: 16235106
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A putative mitochondrial ftsZ gene is present in the unicellular primitive red alga Cyanidioschyzon merolae.
    Takahara M; Takahashi H; Matsunaga S; Miyagishima S; Takano H; Sakai A; Kawano S; Kuroiwa T
    Mol Gen Genet; 2000 Nov; 264(4):452-60. PubMed ID: 11129049
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photorespiratory glycolate oxidase is essential for the survival of the red alga Cyanidioschyzon merolae under ambient CO2 conditions.
    Rademacher N; Kern R; Fujiwara T; Mettler-Altmann T; Miyagishima SY; Hagemann M; Eisenhut M; Weber AP
    J Exp Bot; 2016 May; 67(10):3165-75. PubMed ID: 26994474
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The chloroplast protein translocation complexes of Chlamydomonas reinhardtii: a bioinformatic comparison of Toc and Tic components in plants, green algae and red algae.
    Kalanon M; McFadden GI
    Genetics; 2008 May; 179(1):95-112. PubMed ID: 18493043
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Uncommon properties of lipid biosynthesis of isolated plastids in the unicellular red alga
    Mori N; Moriyama T; Sato N
    FEBS Open Bio; 2019 Jan; 9(1):114-128. PubMed ID: 30652079
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phototaxis of the Unicellular Red Alga
    Maschmann S; Ruban K; Wientapper J; Walter WJ
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32867346
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stable expression of a GFP-reporter gene in the red alga Cyanidioschyzon merolae.
    Watanabe S; Sato J; Imamura S; Ohnuma M; Ohoba Y; Chibazakura T; Tanaka K; Yoshikawa H
    Biosci Biotechnol Biochem; 2014; 78(1):175-7. PubMed ID: 25036501
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genomic and biochemical analysis of lipid biosynthesis in the unicellular rhodophyte Cyanidioschyzon merolae: lack of a plastidic desaturation pathway results in the coupled pathway of galactolipid synthesis.
    Sato N; Moriyama T
    Eukaryot Cell; 2007 Jun; 6(6):1006-17. PubMed ID: 17416897
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evolutionary processes during the formation of the plant-specific Dof transcription factor family.
    Shigyo M; Tabei N; Yoneyama T; Yanagisawa S
    Plant Cell Physiol; 2007 Jan; 48(1):179-85. PubMed ID: 17132629
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Target of rapamycin (TOR) plays a critical role in triacylglycerol accumulation in microalgae.
    Imamura S; Kawase Y; Kobayashi I; Sone T; Era A; Miyagishima SY; Shimojima M; Ohta H; Tanaka K
    Plant Mol Biol; 2015 Oct; 89(3):309-18. PubMed ID: 26350402
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An in silico analysis of the mitochondrial protein import apparatus of plants.
    Carrie C; Murcha MW; Whelan J
    BMC Plant Biol; 2010 Nov; 10():249. PubMed ID: 21078193
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative genomic analyses of transport proteins encoded within the red algae Chondrus crispus, Galdieria sulphuraria, and Cyanidioschyzon merolae
    Lee J; Ghosh S; Saier MH
    J Phycol; 2017 Jun; 53(3):503-521. PubMed ID: 28328149
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational prediction of microRNAs and their targets from three unicellular algae species with complete genome sequences.
    Huang A; Wu X; Wang G; Jia Z; He L
    Can J Microbiol; 2011 Dec; 57(12):1052-61. PubMed ID: 22149261
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The identification of putative RNA polymerase II C-terminal domain associated proteins in red and green algae.
    Yang C; Hager PW; Stiller JW
    Transcription; 2014; 5(5):e970944. PubMed ID: 25483605
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Algae sense exact temperatures: small heat shock proteins are expressed at the survival threshold temperature in Cyanidioschyzon merolae and Chlamydomonas reinhardtii.
    Kobayashi Y; Harada N; Nishimura Y; Saito T; Nakamura M; Fujiwara T; Kuroiwa T; Misumi O
    Genome Biol Evol; 2014 Sep; 6(10):2731-40. PubMed ID: 25267447
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ALCOdb: Gene Coexpression Database for Microalgae.
    Aoki Y; Okamura Y; Ohta H; Kinoshita K; Obayashi T
    Plant Cell Physiol; 2016 Jan; 57(1):e3. PubMed ID: 26644461
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expression of budding yeast FKBP12 confers rapamycin susceptibility to the unicellular red alga Cyanidioschyzon merolae.
    Imamura S; Ishiwata A; Watanabe S; Yoshikawa H; Tanaka K
    Biochem Biophys Res Commun; 2013 Sep; 439(2):264-9. PubMed ID: 23973485
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.