These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 15682380)

  • 1. Design and implementation of a novel mechanical testing system for cellular solids.
    Nazarian A; Stauber M; Müller R
    J Biomed Mater Res B Appl Biomater; 2005 May; 73(2):400-11. PubMed ID: 15682380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-lapsed microstructural imaging of bone failure behavior.
    Nazarian A; Müller R
    J Biomech; 2004 Jan; 37(1):55-65. PubMed ID: 14672568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Limitations of global morphometry in predicting trabecular bone failure.
    Stauber M; Nazarian A; Müller R
    J Bone Miner Res; 2014 Jan; 29(1):134-41. PubMed ID: 23761214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tensile fracture of cancellous bone.
    Carter DR; Schwab GH; Spengler DM
    Acta Orthop Scand; 1980 Oct; 51(5):733-41. PubMed ID: 7468167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and validation of a testing system to assess torsional cancellous bone failure in conjunction with time-lapsed micro-computed tomographic imaging.
    Nazarian A; Bauernschmitt M; Eberle C; Meier D; Müller R; Snyder BD
    J Biomech; 2008 Dec; 41(16):3496-501. PubMed ID: 18990395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trabecular bone failure at the microstructural level.
    Müller R; van Lenthe GH
    Curr Osteoporos Rep; 2006 Jun; 4(2):80-6. PubMed ID: 16822408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental validation of finite element analysis of human vertebral collapse under large compressive strains.
    Hosseini HS; Clouthier AL; Zysset PK
    J Biomech Eng; 2014 Apr; 136(4):. PubMed ID: 24384581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer-aided tissue engineering: benefiting from the control over scaffold micro-architecture.
    Tarawneh AM; Wettergreen M; Liebschner MA
    Methods Mol Biol; 2012; 868():1-25. PubMed ID: 22692601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional dependence of cancellous bone shear properties on trabecular microstructure evaluated using time-lapsed micro-computed tomographic imaging and torsion testing.
    Nazarian A; Meier D; Müller R; Snyder BD
    J Orthop Res; 2009 Dec; 27(12):1667-74. PubMed ID: 19572408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fracture toughness of cancellous bone.
    Cook RB; Zioupos P
    J Biomech; 2009 Sep; 42(13):2054-60. PubMed ID: 19643417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-lapsed investigation of three-dimensional failure and damage accumulation in trabecular bone using synchrotron light.
    Thurner PJ; Wyss P; Voide R; Stauber M; Stampanoni M; Sennhauser U; Müller R
    Bone; 2006 Aug; 39(2):289-99. PubMed ID: 16540385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical fatigue analysis of an advanced new carbon fiber/flax/epoxy plate for bone fracture repair using conventional fatigue tests and thermography.
    Bagheri ZS; El Sawi I; Bougherara H; Zdero R
    J Mech Behav Biomed Mater; 2014 Jul; 35():27-38. PubMed ID: 24727574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micro-compression: a novel technique for the nondestructive assessment of local bone failure.
    Müller R; Gerber SC; Hayes WC
    Technol Health Care; 1998 Dec; 6(5-6):433-44. PubMed ID: 10100946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical properties of ewe vertebral cancellous bone compared with histomorphometry and high-resolution computed tomography parameters.
    Mitton D; Cendre E; Roux JP; Arlot ME; Peix G; Rumelhart C; Babot D; Meunier PJ
    Bone; 1998 Jun; 22(6):651-8. PubMed ID: 9626404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanics of Fractures.
    Frankel VH; Kaplan DJ; Egol KA
    J Orthop Trauma; 2016 Aug; 30 Suppl 2():S2-6. PubMed ID: 27441928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the importance of geometric nonlinearity in finite-element simulations of trabecular bone failure.
    Stölken JS; Kinney JH
    Bone; 2003 Oct; 33(4):494-504. PubMed ID: 14555252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fracture toughness of hydroxyapatite/mica composite, packed hydroxyapatite, alumina ceramics, silicon nitride and -carbide.
    Nordström EG; Yokobori AT; Yokobori T; Aizawa Y
    Biomed Mater Eng; 1998; 8(1):37-43. PubMed ID: 9713684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shock absorbing ability of articular cartilage and subchondral bone under impact compression.
    Malekipour F; Whitton C; Oetomo D; Lee PV
    J Mech Behav Biomed Mater; 2013 Oct; 26():127-35. PubMed ID: 23746699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable plasticity in amorphous silicon carbide films.
    Matsuda Y; Kim N; King SW; Bielefeld J; Stebbins JF; Dauskardt RH
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7950-5. PubMed ID: 23876200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between compressive properties of human os calcis cancellous bone and microarchitecture assessed from 2D and 3D synchrotron microtomography.
    Follet H; Bruyère-Garnier K; Peyrin F; Roux JP; Arlot ME; Burt-Pichat B; Rumelhart C; Meunier PJ
    Bone; 2005 Feb; 36(2):340-51. PubMed ID: 15780961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.