BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

448 related articles for article (PubMed ID: 15682392)

  • 1. Neuronal generation, migration, and differentiation in the mouse hippocampal primoridium as revealed by enhanced green fluorescent protein gene transfer by means of in utero electroporation.
    Nakahira E; Yuasa S
    J Comp Neurol; 2005 Mar; 483(3):329-40. PubMed ID: 15682392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of the mouse amygdala as revealed by enhanced green fluorescent protein gene transfer by means of in utero electroporation.
    Soma M; Aizawa H; Ito Y; Maekawa M; Osumi N; Nakahira E; Okamoto H; Tanaka K; Yuasa S
    J Comp Neurol; 2009 Mar; 513(1):113-28. PubMed ID: 19107806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mosaic organization of the hippocampal neuroepithelium and the multiple germinal sources of dentate granule cells.
    Altman J; Bayer SA
    J Comp Neurol; 1990 Nov; 301(3):325-42. PubMed ID: 2262594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organization of radial glial cells during the development of the rat dentate gyrus.
    Rickmann M; Amaral DG; Cowan WM
    J Comp Neurol; 1987 Oct; 264(4):449-79. PubMed ID: 3680638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mature astrocytes transform into transitional radial glia within adult mouse neocortex that supports directed migration of transplanted immature neurons.
    Leavitt BR; Hernit-Grant CS; Macklis JD
    Exp Neurol; 1999 May; 157(1):43-57. PubMed ID: 10222107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Migration and nucleogenesis of mouse precerebellar neurons visualized by in utero electroporation of a green fluorescent protein gene.
    Okada T; Keino-Masu K; Masu M
    Neurosci Res; 2007 Jan; 57(1):40-9. PubMed ID: 17084476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro analysis of the origin, migratory behavior, and maturation of cortical pyramidal cells.
    Hatanaka Y; Murakami F
    J Comp Neurol; 2002 Dec; 454(1):1-14. PubMed ID: 12410614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Birth-date-dependent segregation of the mouse cerebral cortical neurons in reaggregation cultures.
    Ajioka I; Nakajima K
    Eur J Neurosci; 2005 Jul; 22(2):331-42. PubMed ID: 16045486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radial organization of the hippocampal dentate gyrus: a Golgi, ultrastructural, and immunocytochemical analysis in the developing rhesus monkey.
    Eckenhoff MF; Rakic P
    J Comp Neurol; 1984 Feb; 223(1):1-21. PubMed ID: 6707248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct visualization of cell movement in the embryonic olfactory bulb using green fluorescent protein transgenic mice: evidence for rapid tangential migration of neural cell precursors.
    Yamamoto K; Yamaguchi M; Okabe S
    Neurosci Res; 2005 Feb; 51(2):199-214. PubMed ID: 15681037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of astrocytes in the mouse hippocampus as tracked by tenascin-C gene expression.
    Yuasa S
    Arch Histol Cytol; 2001 May; 64(2):149-58. PubMed ID: 11436985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of astroglial cells in the proliferative matrices, the granule cell layer, and the hippocampal fissure of the hamster dentate gyrus.
    Sievers J; Hartmann D; Pehlemann FW; Berry M
    J Comp Neurol; 1992 Jun; 320(1):1-32. PubMed ID: 1401238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real time analysis of pontine neurons during initial stages of nucleogenesis.
    Watanabe H; Murakami F
    Neurosci Res; 2009 May; 64(1):20-9. PubMed ID: 19428680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal migration and differentiation in the development of the mouse dorsal cochlear nucleus.
    Ivanova A; Yuasa S
    Dev Neurosci; 1998; 20(6):495-511. PubMed ID: 9858838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation of Neurogenin2 specifies the migration properties and the dendritic morphology of pyramidal neurons in the neocortex.
    Hand R; Bortone D; Mattar P; Nguyen L; Heng JI; Guerrier S; Boutt E; Peters E; Barnes AP; Parras C; Schuurmans C; Guillemot F; Polleux F
    Neuron; 2005 Oct; 48(1):45-62. PubMed ID: 16202708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RGMb controls aggregation and migration of Neogenin-positive cells in vitro and in vivo.
    Conrad S; Stimpfle F; Montazeri S; Oldekamp J; Seid K; Alvarez-Bolado G; Skutella T
    Mol Cell Neurosci; 2010 Feb; 43(2):222-31. PubMed ID: 19944164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurons derived from radial glial cells establish radial units in neocortex.
    Noctor SC; Flint AC; Weissman TA; Dammerman RS; Kriegstein AR
    Nature; 2001 Feb; 409(6821):714-20. PubMed ID: 11217860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The fate of neural progenitor cells expressing astrocytic and radial glial markers in the postnatal rat dentate gyrus.
    Namba T; Mochizuki H; Onodera M; Mizuno Y; Namiki H; Seki T
    Eur J Neurosci; 2005 Oct; 22(8):1928-41. PubMed ID: 16262632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo function of Rnd2 in the development of neocortical pyramidal neurons.
    Nakamura K; Yamashita Y; Tamamaki N; Katoh H; Kaneko T; Negishi M
    Neurosci Res; 2006 Feb; 54(2):149-53. PubMed ID: 16303198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of N-methyl-D-aspartate receptor activity resulted in aberrant neuronal migration caused by delayed morphological development in the mouse neocortex.
    Uchino S; Hirasawa T; Tabata H; Gonda Y; Waga C; Ondo Y; Nakajima K; Kohsaka S
    Neuroscience; 2010 Aug; 169(2):609-18. PubMed ID: 20497907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.