These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 1568248)
1. Molecular mechanisms of intracellular calcium excitability in X. laevis oocytes. Lechleiter JD; Clapham DE Cell; 1992 Apr; 69(2):283-94. PubMed ID: 1568248 [TBL] [Abstract][Full Text] [Related]
2. Two-dimensional model of calcium waves reproduces the patterns observed in Xenopus oocytes. Girard S; Lückhoff A; Lechleiter J; Sneyd J; Clapham D Biophys J; 1992 Feb; 61(2):509-17. PubMed ID: 1547335 [TBL] [Abstract][Full Text] [Related]
3. A single-pool model for intracellular calcium oscillations and waves in the Xenopus laevis oocyte. Atri A; Amundson J; Clapham D; Sneyd J Biophys J; 1993 Oct; 65(4):1727-39. PubMed ID: 8274661 [TBL] [Abstract][Full Text] [Related]
4. The role of calmodulin-binding sites in the regulation of the Drosophila TRPL cation channel expressed in Xenopus laevis oocytes by ca2+, inositol 1,4,5-trisphosphate and GTP-binding proteins. Lan L; Brereton H; Barritt GJ Biochem J; 1998 Mar; 330 ( Pt 3)(Pt 3):1149-58. PubMed ID: 9494079 [TBL] [Abstract][Full Text] [Related]
5. Metabolism of inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate by the oocytes of Xenopus laevis. Sims CE; Allbritton NL J Biol Chem; 1998 Feb; 273(7):4052-8. PubMed ID: 9461597 [TBL] [Abstract][Full Text] [Related]
6. Store-activated Ca2+ inflow in Xenopus laevis oocytes: inhibition by primaquine and evaluation of the role of membrane fusion. Gregory RB; Barritt GJ Biochem J; 1996 Nov; 319 ( Pt 3)(Pt 3):755-60. PubMed ID: 8920977 [TBL] [Abstract][Full Text] [Related]
7. Inositol 1,4,5-trisphosphate-induced calcium release and guanine nucleotide-binding protein-mediated periodic calcium rises in golden hamster eggs. Miyazaki S J Cell Biol; 1988 Feb; 106(2):345-53. PubMed ID: 3123497 [TBL] [Abstract][Full Text] [Related]
8. Inositol 1,4,5-trisphosphate [correction of tris-phosphate] activation of inositol trisphosphate [correction of tris-phosphate] receptor Ca2+ channel by ligand tuning of Ca2+ inhibition. Mak DO; McBride S; Foskett JK Proc Natl Acad Sci U S A; 1998 Dec; 95(26):15821-5. PubMed ID: 9861054 [TBL] [Abstract][Full Text] [Related]
9. Expression of Drosophila trpl cRNA in Xenopus laevis oocytes leads to the appearance of a Ca2+ channel activated by Ca2+ and calmodulin, and by guanosine 5'[gamma-thio]triphosphate. Lan L; Bawden MJ; Auld AM; Barritt GJ Biochem J; 1996 Jun; 316 ( Pt 3)(Pt 3):793-803. PubMed ID: 8670154 [TBL] [Abstract][Full Text] [Related]
10. Increased frequency of calcium waves in Xenopus laevis oocytes that express a calcium-ATPase. Camacho P; Lechleiter JD Science; 1993 Apr; 260(5105):226-9. PubMed ID: 8385800 [TBL] [Abstract][Full Text] [Related]
11. Mechanism of release of Ca2+ from intracellular stores in response to ionomycin in oocytes of the frog Xenopus laevis. Yoshida S; Plant S J Physiol; 1992 Dec; 458():307-18. PubMed ID: 1302268 [TBL] [Abstract][Full Text] [Related]
12. Effects of the low-molecular-weight GTP-binding protein RhoA on calcium waves in xenopus oocytes. Kato N Biochem Biophys Res Commun; 1996 Sep; 226(2):580-4. PubMed ID: 8806676 [TBL] [Abstract][Full Text] [Related]
13. Spiral calcium wave propagation and annihilation in Xenopus laevis oocytes. Lechleiter J; Girard S; Peralta E; Clapham D Science; 1991 Apr; 252(5002):123-6. PubMed ID: 2011747 [TBL] [Abstract][Full Text] [Related]
14. Control of intracellular calcium redistribution by guanine nucleotides and inositol 1,4,5-trisphosphate in permeabilized GH4C1 cells. Koshiyama H; Tashjian AH Endocrinology; 1991 Jun; 128(6):2715-22. PubMed ID: 1903695 [TBL] [Abstract][Full Text] [Related]
15. Inositol trisphosphate-mediated Ca2+ influx into Xenopus oocytes triggers Ca2+ liberation from intracellular stores. Yao Y; Parker I J Physiol; 1993 Aug; 468():275-95. PubMed ID: 8254510 [TBL] [Abstract][Full Text] [Related]
16. Ca2+ influx modulation of temporal and spatial patterns of inositol trisphosphate-mediated Ca2+ liberation in Xenopus oocytes. Yao Y; Parker I J Physiol; 1994 Apr; 476(1):17-28. PubMed ID: 8046631 [TBL] [Abstract][Full Text] [Related]
17. Inositol trisphosphate-induced calcium release in the generation of calcium oscillations in bovine eggs. Fissore RA; Pinto-Correia C; Robl JM Biol Reprod; 1995 Oct; 53(4):766-74. PubMed ID: 8547468 [TBL] [Abstract][Full Text] [Related]
18. Theoretical analysis of calcium wave propagation based on inositol (1,4,5)-trisphosphate (InsP3) receptor functional properties. Bezprozvanny I Cell Calcium; 1994 Sep; 16(3):151-66. PubMed ID: 7828170 [TBL] [Abstract][Full Text] [Related]
19. Ca2+ wave dispersion and spiral wave entrainment in Xenopus laevis oocytes overexpressing Ca2+ ATPases. Lechleiter JD; John LM; Camacho P Biophys Chem; 1998 May; 72(1-2):123-9. PubMed ID: 9652090 [TBL] [Abstract][Full Text] [Related]
20. Quantal puffs of intracellular Ca2+ evoked by inositol trisphosphate in Xenopus oocytes. Yao Y; Choi J; Parker I J Physiol; 1995 Feb; 482 ( Pt 3)(Pt 3):533-53. PubMed ID: 7738847 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]