BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 15682503)

  • 1. Experiment and mechanism investigation on advanced reburning for NO(x) reduction: influence of CO and temperature.
    Wang ZH; Zhou JH; Zhang YW; Lu ZM; Fan JR; Cen KF
    J Zhejiang Univ Sci B; 2005 Mar; 6(3):187-94. PubMed ID: 15682503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental and modeling study of the effect of CH(4) and pulverized coal on selective non-catalytic reduction process.
    Zhang Y; Cai N; Yang J; Xu B
    Chemosphere; 2008 Oct; 73(5):650-6. PubMed ID: 18727998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of the reburning process using sewage sludge-derived syngas.
    Werle S
    Waste Manag; 2012 Apr; 32(4):753-8. PubMed ID: 22079251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of significant factors in reburning with coal volatiles.
    Zarnitz R; Pisupati S
    Environ Sci Technol; 2008 Mar; 42(6):2004-8. PubMed ID: 18409628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Kinetic mechanism and characteristics researches for hydrazine-based NOx removal at moderate to high temperatures].
    Hong L; Chen DZ; Wang D; Huang S
    Huan Jing Ke Xue; 2012 Aug; 33(8):2901-8. PubMed ID: 23213922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and modeling study of the effects of multicomponent gas additives on selective non-catalytic reduction process.
    Cao Q; Wu S; Lui H; Liu D; Qiu P
    Chemosphere; 2009 Aug; 76(9):1199-205. PubMed ID: 19577276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Comprehensive fuzzy evaluation of nitrogen oxide control technologies for coal-fired power plants].
    Yu C; Wang SX; Hao JM
    Huan Jing Ke Xue; 2010 Jul; 31(7):1464-9. PubMed ID: 20825011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of combustion-generated nitrogen oxides by selective non-catalytic reduction.
    Javed MT; Irfan N; Gibbs BM
    J Environ Manage; 2007 May; 83(3):251-89. PubMed ID: 16842901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NO removal by reducing agents and additives in the selective non-catalytic reduction (SNCR) process.
    Bae SW; Roh SA; Kim SD
    Chemosphere; 2006 Sep; 65(1):170-5. PubMed ID: 16581102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of gas compositions on NOx reduction by selective non-catalytic reduction with ammonia in a simulated cement precalciner atmosphere.
    Fan W; Zhu T; Sun Y; Lv D
    Chemosphere; 2014 Oct; 113():182-7. PubMed ID: 25065808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detailed in-furnace measurements with reburning of superfine pulverized coal in high CO
    Shen J; Liu J; Deng S; Wang S; Chen B; Jiang X
    J Environ Sci (China); 2021 Jun; 104():326-334. PubMed ID: 33985736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and modeling study of the effect of CO and H2 on the urea DeNO(x) process in a 150kW laboratory reactor.
    Javed MT; Nimmo W; Gibbs BM
    Chemosphere; 2008 Jan; 70(6):1059-67. PubMed ID: 17845815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of hydrogen generated by dielectric barrier discharge of NH3 on selective non-catalytic reduction process.
    Byun Y; Ko KB; Cho M; Namkung W; Shin DN; Koh DJ
    Chemosphere; 2009 May; 75(6):815-8. PubMed ID: 19230950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid selective noncatalytic reduction (SNCR)/selective catalytic reduction (SCR) for NOx removal using low-temperature SCR with Mn-V2O5/TiO2 catalyst.
    Choi SW; Choi SK; Bae HK
    J Air Waste Manag Assoc; 2015 Apr; 65(4):485-91. PubMed ID: 25947218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation on the interaction of NH
    Li Y; Sun S; Feng D; Geng K; Cheng Z; Zhang W; Zhao Y; Yang W
    J Environ Manage; 2024 Jun; 365():121474. PubMed ID: 38936022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving combustion characteristics and NO(x) emissions of a down-fired 350 MW(e) utility boiler with multiple injection and multiple staging.
    Kuang M; Li Z; Xu S; Zhu Q
    Environ Sci Technol; 2011 Apr; 45(8):3803-11. PubMed ID: 21428379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intramolecular distribution of stable nitrogen and oxygen isotopes of nitrous oxide emitted during coal combustion.
    Ogawa M; Yoshida N
    Chemosphere; 2005 Nov; 61(6):877-87. PubMed ID: 15993467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of tire-derived fuel for use in nitrogen oxide reduction by reburning.
    Miller CA; Lemieux PM; Touati A
    J Air Waste Manag Assoc; 1998 Aug; 48(8):729-35. PubMed ID: 9739625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of NOx from flue gas with radical oxidation combined with chemical scrubber.
    Lin H; Gao X; Luo ZY; Guan SP; Cen KF; Huang Z
    J Environ Sci (China); 2004; 16(3):462-5. PubMed ID: 15272724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Experimental investigation on emission characteristic of NOx during micropulverized coal oxidation].
    Jiang XM; Wei LH; Huang XY; Zhang CQ
    Huan Jing Ke Xue; 2008 Mar; 29(3):583-6. PubMed ID: 18649511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.