BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 1568260)

  • 1. A novel mutation occurring in the PHO80 gene suppresses the PHO4c mutations of Saccharomyces cerevisiae.
    Okada H; Toh-e A
    Curr Genet; 1992 Feb; 21(2):95-9. PubMed ID: 1568260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Negative regulatory elements of the Saccharomyces cerevisiae PHO system: interaction between PHO80 and PHO85 proteins.
    Gilliquet V; Legrain M; Berben G; Hilger F
    Gene; 1990 Dec; 96(2):181-8. PubMed ID: 2269431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A truncated form of the Pho80 cyclin redirects the Pho85 kinase to disrupt vacuole inheritance in S. cerevisiae.
    Nicolson TA; Weisman LS; Payne GS; Wickner WT
    J Cell Biol; 1995 Aug; 130(4):835-45. PubMed ID: 7642701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular analysis of the PHO81 gene of Saccharomyces cerevisiae.
    Creasy CL; Madden SL; Bergman LW
    Nucleic Acids Res; 1993 Apr; 21(8):1975-82. PubMed ID: 8493108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional domains of a positive regulatory protein, PHO4, for transcriptional control of the phosphatase regulon in Saccharomyces cerevisiae.
    Ogawa N; Oshima Y
    Mol Cell Biol; 1990 May; 10(5):2224-36. PubMed ID: 2183025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning and sequencing of the PHO80 gene and CEN15 of Saccharomyces cerevisiae.
    Toh-e A; Shimauchi T
    Yeast; 1986 Jun; 2(2):129-39. PubMed ID: 3333302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and expression of the PHO80 gene of Saccharomyces cerevisiae.
    Madden SL; Creasy CL; Srinivas V; Fawcett W; Bergman LW
    Nucleic Acids Res; 1988 Mar; 16(6):2625-37. PubMed ID: 3283704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extragenic suppressors of Saccharomyces cerevisiae prp4 mutations identify a negative regulator of PRP genes.
    Maddock JR; Weidenhammer EM; Adams CC; Lunz RL; Woolford JL
    Genetics; 1994 Mar; 136(3):833-47. PubMed ID: 8005438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Possible cross-regulation of phosphate and sulfate metabolism in Saccharomyces cerevisiae.
    O'Connell KF; Baker RE
    Genetics; 1992 Sep; 132(1):63-73. PubMed ID: 1398064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The transcription factor, the Cdk, its cyclin and their regulator: directing the transcriptional response to a nutritional signal.
    Hirst K; Fisher F; McAndrew PC; Goding CR
    EMBO J; 1994 Nov; 13(22):5410-20. PubMed ID: 7957107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The GCR1 requirement for yeast glycolytic gene expression is suppressed by dominant mutations in the SGC1 gene, which encodes a novel basic-helix-loop-helix protein.
    Nishi K; Park CS; Pepper AE; Eichinger G; Innis MA; Holland MJ
    Mol Cell Biol; 1995 May; 15(5):2646-53. PubMed ID: 7739544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorylation of the transcription factor PHO4 by a cyclin-CDK complex, PHO80-PHO85.
    Kaffman A; Herskowitz I; Tjian R; O'Shea EK
    Science; 1994 Feb; 263(5150):1153-6. PubMed ID: 8108735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular and expression analysis of the negative regulators involved in the transcriptional regulation of acid phosphatase production in Saccharomyces cerevisiae.
    Madden SL; Johnson DL; Bergman LW
    Mol Cell Biol; 1990 Nov; 10(11):5950-7. PubMed ID: 2122235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Studies on the cloning, expression and function of the yeast PHO 80 gene].
    Zhao Y; Ao S
    Yi Chuan Xue Bao; 1996; 23(2):142-8. PubMed ID: 8695181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the MKS1 gene, a new negative regulator of the Ras-cyclic AMP pathway in Saccharomyces cerevisiae.
    Matsuura A; Anraku Y
    Mol Gen Genet; 1993 Apr; 238(1-2):6-16. PubMed ID: 8386801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-site phosphorylation of Pho4 by the cyclin-CDK Pho80-Pho85 is semi-processive with site preference.
    Jeffery DA; Springer M; King DS; O'Shea EK
    J Mol Biol; 2001 Mar; 306(5):997-1010. PubMed ID: 11237614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insertional mutagenesis in Neurospora crassa: cloning and molecular analysis of the preg+ gene controlling the activity of the transcriptional activator NUC-1.
    Kang S; Metzenberg RL
    Genetics; 1993 Feb; 133(2):193-202. PubMed ID: 8436269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of carboxy-terminal truncations of the yeast mitochondrial mRNA-specific translational activator PET122 by mutations in two new genes, MRP17 and PET127.
    Haffter P; Fox TD
    Mol Gen Genet; 1992 Oct; 235(1):64-73. PubMed ID: 1279374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of PHO4 nuclear localization by the PHO80-PHO85 cyclin-CDK complex.
    O'Neill EM; Kaffman A; Jolly ER; O'Shea EK
    Science; 1996 Jan; 271(5246):209-12. PubMed ID: 8539622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of the Pcl7-Pho85 cyclin-cdk complex by Pho81.
    Lee M; O'Regan S; Moreau JL; Johnson AL; Johnston LH; Goding CR
    Mol Microbiol; 2000 Oct; 38(2):411-22. PubMed ID: 11069666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.