These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 15682825)

  • 41. The monoamine-mediated antiallodynic effects of intrathecally administered milnacipran, a serotonin noradrenaline reuptake inhibitor, in a rat model of neuropathic pain.
    Obata H; Saito S; Koizuka S; Nishikawa K; Goto F
    Anesth Analg; 2005 May; 100(5):1406-1410. PubMed ID: 15845695
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Excitatory transmission in the basolateral amygdala.
    Rainnie DG; Asprodini EK; Shinnick-Gallagher P
    J Neurophysiol; 1991 Sep; 66(3):986-98. PubMed ID: 1684383
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effects of serotonin and/or noradrenaline reuptake inhibitors on impulsive-like action assessed by the three-choice serial reaction time task: a simple and valid model of impulsive action using rats.
    Tsutsui-Kimura I; Ohmura Y; Izumi T; Yamaguchi T; Yoshida T; Yoshioka M
    Behav Pharmacol; 2009 Sep; 20(5-6):474-83. PubMed ID: 19730368
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Milnacipran: a comparative analysis of human monoamine uptake and transporter binding affinity.
    Vaishnavi SN; Nemeroff CB; Plott SJ; Rao SG; Kranzler J; Owens MJ
    Biol Psychiatry; 2004 Feb; 55(3):320-2. PubMed ID: 14744476
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Atomoxetine modulates spontaneous and sensory-evoked discharge of locus coeruleus noradrenergic neurons.
    Bari A; Aston-Jones G
    Neuropharmacology; 2013 Jan; 64(1):53-64. PubMed ID: 22820275
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Serotonin 5-HT
    Carter F; Chapman CA
    Neuroscience; 2019 May; 406():325-332. PubMed ID: 30902681
    [TBL] [Abstract][Full Text] [Related]  

  • 47. alpha 2-adrenoceptor-mediated hyperpolarization of locus coeruleus neurons: intracellular studies in vivo.
    Aghajanian GK; VanderMaelen CP
    Science; 1982 Mar; 215(4538):1394-6. PubMed ID: 6278591
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of repeated milnacipran administration on brain serotonergic and noradrenergic functions in healthy volunteers.
    Soya A; Terao T; Nakajima M; Kojima H; Okamoto T; Inoue Y; Iwakawa M; Shinkai K; Yoshimura R; Ueta Y; Nakamura J
    Psychopharmacology (Berl); 2006 Sep; 187(4):526-7. PubMed ID: 16830129
    [No Abstract]   [Full Text] [Related]  

  • 49. Comparison of effects of dual transporter inhibitors on monoamine transporters and extracellular levels in rats.
    Koch S; Hemrick-Luecke SK; Thompson LK; Evans DC; Threlkeld PG; Nelson DL; Perry KW; Bymaster FP
    Neuropharmacology; 2003 Dec; 45(7):935-44. PubMed ID: 14573386
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Operational characteristics of somatostatin receptors mediating inhibitory actions on rat locus coeruleus neurones.
    Chessell IP; Black MD; Feniuk W; Humphrey PP
    Br J Pharmacol; 1996 Apr; 117(8):1673-8. PubMed ID: 8732275
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of the selective noradrenergic reuptake inhibitor reboxetine on the firing activity of noradrenaline and serotonin neurons.
    Szabo ST; Blier P
    Eur J Neurosci; 2001 Jun; 13(11):2077-87. PubMed ID: 11422448
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of the central analgesic tramadol and its main metabolite, O-desmethyltramadol, on rat locus coeruleus neurones.
    Sevcik J; Nieber K; Driessen B; Illes P
    Br J Pharmacol; 1993 Sep; 110(1):169-76. PubMed ID: 8220877
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Adrenergic responses in silent and putative inhibitory pacemaker-like neurons of the rat rostral ventrolateral medulla in vitro.
    Hayar A; Feltz P; Piguet P
    Neuroscience; 1997 Mar; 77(1):199-217. PubMed ID: 9044387
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pharmacology and pharmacokinetics of milnacipran.
    Puozzo C; Panconi E; Deprez D
    Int Clin Psychopharmacol; 2002 Jun; 17 Suppl 1():S25-35. PubMed ID: 12369608
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Serotonergic modulation of neurotransmission in the rat basolateral amygdala.
    Rainnie DG
    J Neurophysiol; 1999 Jul; 82(1):69-85. PubMed ID: 10400936
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Kappa opioid receptor activation depresses excitatory synaptic input to rat locus coeruleus neurons in vitro.
    McFadzean I; Lacey MG; Hill RG; Henderson G
    Neuroscience; 1987 Jan; 20(1):231-9. PubMed ID: 3031541
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Primary afferent-evoked glycine- and GABA-mediated IPSPs in substantia gelatinosa neurones in the rat spinal cord in vitro.
    Yoshimura M; Nishi S
    J Physiol; 1995 Jan; 482 ( Pt 1)(Pt 1):29-38. PubMed ID: 7730987
    [TBL] [Abstract][Full Text] [Related]  

  • 58. alpha(2)-Adrenoceptors mediate the acute inhibitory effect of fluoxetine on locus coeruleus noradrenergic neurons.
    Miguelez C; Fernandez-Aedo I; Torrecilla M; Grandoso L; Ugedo L
    Neuropharmacology; 2009; 56(6-7):1068-73. PubMed ID: 19298831
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Action of dexmedetomidine on rat locus coeruleus neurones: intracellular recording in vitro.
    Chiu TH; Chen MJ; Yang YR; Yang JJ; Tang FI
    Eur J Pharmacol; 1995 Oct; 285(3):261-8. PubMed ID: 8575512
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of milnacipran and pindolol on extracellular noradrenaline and serotonin levels in guinea pig hypothalamus.
    Moret C; Briley M
    J Neurochem; 1997 Aug; 69(2):815-22. PubMed ID: 9231743
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.