These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
472 related articles for article (PubMed ID: 15683224)
1. Mutagenesis evidence that the partial reactions of firefly bioluminescence are catalyzed by different conformations of the luciferase C-terminal domain. Branchini BR; Southworth TL; Murtiashaw MH; Wilkinson SR; Khattak NF; Rosenberg JC; Zimmer M Biochemistry; 2005 Feb; 44(5):1385-93. PubMed ID: 15683224 [TBL] [Abstract][Full Text] [Related]
2. Bioluminescence is produced from a trapped firefly luciferase conformation predicted by the domain alternation mechanism. Branchini BR; Rosenberg JC; Fontaine DM; Southworth TL; Behney CE; Uzasci L J Am Chem Soc; 2011 Jul; 133(29):11088-91. PubMed ID: 21707059 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of an N-acyl sulfamate analog of luciferyl-AMP: a stable and potent inhibitor of firefly luciferase. Branchini BR; Murtiashaw MH; Carmody JN; Mygatt EE; Southworth TL Bioorg Med Chem Lett; 2005 Sep; 15(17):3860-4. PubMed ID: 15990297 [TBL] [Abstract][Full Text] [Related]
4. The role of firefly luciferase C-terminal domain in efficient coupling of adenylation and oxidative steps. Ayabe K; Zako T; Ueda H FEBS Lett; 2005 Aug; 579(20):4389-94. PubMed ID: 16061229 [TBL] [Abstract][Full Text] [Related]
5. Structural basis for the spectral difference in luciferase bioluminescence. Nakatsu T; Ichiyama S; Hiratake J; Saldanha A; Kobashi N; Sakata K; Kato H Nature; 2006 Mar; 440(7082):372-6. PubMed ID: 16541080 [TBL] [Abstract][Full Text] [Related]
6. Increase in bioluminescence intensity of firefly luciferase using genetic modification. Fujii H; Noda K; Asami Y; Kuroda A; Sakata M; Tokida A Anal Biochem; 2007 Jul; 366(2):131-6. PubMed ID: 17540326 [TBL] [Abstract][Full Text] [Related]
7. An alternative mechanism of bioluminescence color determination in firefly luciferase. Branchini BR; Southworth TL; Murtiashaw MH; Magyar RA; Gonzalez SA; Ruggiero MC; Stroh JG Biochemistry; 2004 Jun; 43(23):7255-62. PubMed ID: 15182171 [TBL] [Abstract][Full Text] [Related]
8. Site-directed mutagenesis of firefly luciferase: implication of conserved residue(s) in bioluminescence emission spectra among firefly luciferases. Tafreshi NKh; Sadeghizadeh M; Emamzadeh R; Ranjbar B; Naderi-Manesh H; Hosseinkhani S Biochem J; 2008 May; 412(1):27-33. PubMed ID: 18251715 [TBL] [Abstract][Full Text] [Related]
9. Site-directed mutagenesis of histidine 245 in firefly luciferase: a proposed model of the active site. Branchini BR; Magyar RA; Murtiashaw MH; Anderson SM; Zimmer M Biochemistry; 1998 Nov; 37(44):15311-9. PubMed ID: 9799491 [TBL] [Abstract][Full Text] [Related]
10. Firefly bioluminescence: a mechanistic approach of luciferase catalyzed reactions. Marques SM; Esteves da Silva JC IUBMB Life; 2009 Jan; 61(1):6-17. PubMed ID: 18949818 [TBL] [Abstract][Full Text] [Related]
11. The effective role of positive charge saturation in bioluminescence color and thermostability of firefly luciferase. Said Alipour B; Hosseinkhani S; Ardestani SK; Moradi A Photochem Photobiol Sci; 2009 Jun; 8(6):847-55. PubMed ID: 19492113 [TBL] [Abstract][Full Text] [Related]
12. Coenzyme A affects firefly luciferase luminescence because it acts as a substrate and not as an allosteric effector. Fraga H; Fernandes D; Fontes R; Esteves da Silva JC FEBS J; 2005 Oct; 272(20):5206-16. PubMed ID: 16218952 [TBL] [Abstract][Full Text] [Related]
13. Acyl-adenylate motif of the acyl-adenylate/thioester-forming enzyme superfamily: a site-directed mutagenesis study with the Pseudomonas sp. strain CBS3 4-chlorobenzoate:coenzyme A ligase. Chang KH; Xiang H; Dunaway-Mariano D Biochemistry; 1997 Dec; 36(50):15650-9. PubMed ID: 9398293 [TBL] [Abstract][Full Text] [Related]
14. Functional conversion of fatty acyl-CoA synthetase to firefly luciferase by site-directed mutagenesis: a key substitution responsible for luminescence activity. Oba Y; Iida K; Inouye S FEBS Lett; 2009 Jun; 583(12):2004-8. PubMed ID: 19450587 [TBL] [Abstract][Full Text] [Related]
15. Red- and green-emitting firefly luciferase mutants for bioluminescent reporter applications. Branchini BR; Southworth TL; Khattak NF; Michelini E; Roda A Anal Biochem; 2005 Oct; 345(1):140-8. PubMed ID: 16125663 [TBL] [Abstract][Full Text] [Related]
16. Structural evolution of luciferase activity in Zophobas mealworm AMP/CoA-ligase (protoluciferase) through site-directed mutagenesis of the luciferin binding site. Prado RA; Barbosa JA; Ohmiya Y; Viviani VR Photochem Photobiol Sci; 2011 Jul; 10(7):1226-32. PubMed ID: 21505686 [TBL] [Abstract][Full Text] [Related]
17. Effect of charge distribution in a flexible loop on the bioluminescence color of firefly luciferases. Moradi A; Hosseinkhani S; Naderi-Manesh H; Sadeghizadeh M; Alipour BS Biochemistry; 2009 Jan; 48(3):575-82. PubMed ID: 19119851 [TBL] [Abstract][Full Text] [Related]
18. New application of firefly luciferase--it can catalyze the enantioselective thioester formation of 2-arylpropanoic acid. Kato D; Teruya K; Yoshida H; Takeo M; Negoro S; Ohta H FEBS J; 2007 Aug; 274(15):3877-85. PubMed ID: 17617223 [TBL] [Abstract][Full Text] [Related]
19. Relationship between stability and bioluminescence color of firefly luciferase. Maghami P; Ranjbar B; Hosseinkhani S; Ghasemi A; Moradi A; Gill P Photochem Photobiol Sci; 2010 Mar; 9(3):376-83. PubMed ID: 20221465 [TBL] [Abstract][Full Text] [Related]
20. Red light in chemiluminescence and yellow-green light in bioluminescence: color-tuning mechanism of firefly, Photinus pyralis, studied by the symmetry-adapted cluster-configuration interaction method. Nakatani N; Hasegawa JY; Nakatsuji H J Am Chem Soc; 2007 Jul; 129(28):8756-65. PubMed ID: 17585760 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]