These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
404 related articles for article (PubMed ID: 15683225)
1. Photophysics of tryptophan fluorescence: link with the catalytic strategy of the citrate synthase from Thermoplasma acidophilum. Kurz LC; Fite B; Jean J; Park J; Erpelding T; Callis P Biochemistry; 2005 Feb; 44(5):1394-413. PubMed ID: 15683225 [TBL] [Abstract][Full Text] [Related]
2. Substrate polarization in enzyme catalysis: QM/MM analysis of the effect of oxaloacetate polarization on acetyl-CoA enolization in citrate synthase. van der Kamp MW; Perruccio F; Mulholland AJ Proteins; 2007 Nov; 69(3):521-35. PubMed ID: 17623847 [TBL] [Abstract][Full Text] [Related]
3. Effects of changes in three catalytic residues on the relative stabilities of some of the intermediates and transition states in the citrate synthase reaction. Kurz LC; Nakra T; Stein R; Plungkhen W; Riley M; Hsu F; Drysdale GR Biochemistry; 1998 Jul; 37(27):9724-37. PubMed ID: 9657685 [TBL] [Abstract][Full Text] [Related]
4. The partial substrate dethiaacetyl-coenzyme A mimics all critical carbon acid reactions in the condensation half-reaction catalyzed by Thermoplasma acidophilum citrate synthase. Kurz LC; Constantine CZ; Jiang H; Kappock TJ Biochemistry; 2009 Aug; 48(33):7878-91. PubMed ID: 19645419 [TBL] [Abstract][Full Text] [Related]
5. Active site mutants of pig citrate synthase: effects of mutations on the enzyme catalytic and structural properties. Evans CT; Kurz LC; Remington SJ; Srere PA Biochemistry; 1996 Aug; 35(33):10661-72. PubMed ID: 8718855 [TBL] [Abstract][Full Text] [Related]
6. Steady-state kinetics and tryptophan fluorescence properties of halohydrin dehalogenase from Agrobacterium radiobacter. Roles of W139 and W249 in the active site and halide-induced conformational change. Tang L; van Merode AE; Lutje Spelberg JH; Fraaije MW; Janssen DB Biochemistry; 2003 Dec; 42(47):14057-65. PubMed ID: 14636074 [TBL] [Abstract][Full Text] [Related]
7. Ability of single-site mutants of citrate synthase to catalyze proton transfer from the methyl group of dethiaacetyl-coenzyme A, a non-thioester substrate analog. Kurz LC; Roble JH; Nakra T; Drysdale GR; Buzan JM; Schwartz B; Drueckhammer DG Biochemistry; 1997 Apr; 36(13):3981-90. PubMed ID: 9092828 [TBL] [Abstract][Full Text] [Related]
8. Thermostability and thermoactivity of citrate synthases from the thermophilic and hyperthermophilic archaea, Thermoplasma acidophilum and Pyrococcus furiosus. Arnott MA; Michael RA; Thompson CR; Hough DW; Danson MJ J Mol Biol; 2000 Dec; 304(4):657-68. PubMed ID: 11099387 [TBL] [Abstract][Full Text] [Related]
9. The effect of valine substitution for glycine in the dimer interface of citrate synthase from Thermoplasma acidophilum on stability and activity. Kocabiyik S; Erduran I Biochem Biophys Res Commun; 2000 Aug; 275(2):460-5. PubMed ID: 10964687 [TBL] [Abstract][Full Text] [Related]
10. Mechanism of the highly efficient quenching of tryptophan fluorescence in human gammaD-crystallin. Chen J; Flaugh SL; Callis PR; King J Biochemistry; 2006 Sep; 45(38):11552-63. PubMed ID: 16981715 [TBL] [Abstract][Full Text] [Related]
11. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations. Valiev M; Kawai R; Adams JA; Weare JH J Am Chem Soc; 2003 Aug; 125(33):9926-7. PubMed ID: 12914447 [TBL] [Abstract][Full Text] [Related]
12. Dissecting the catalytic mechanism of betaine-homocysteine S-methyltransferase by use of intrinsic tryptophan fluorescence and site-directed mutagenesis. Castro C; Gratson AA; Evans JC; Jiracek J; Collinsová M; Ludwig ML; Garrow TA Biochemistry; 2004 May; 43(18):5341-51. PubMed ID: 15122900 [TBL] [Abstract][Full Text] [Related]
13. Mechanistic interpretation of tryptophan fluorescence quenching in the time courses of glutamate dehydrogenase catalyzed reactions. Saha SK; Maniscalco SJ; Fisher HF Biochemistry; 1996 Dec; 35(51):16483-8. PubMed ID: 8987981 [TBL] [Abstract][Full Text] [Related]
14. Effects of substitution of tryptophan 412 in the substrate activation pathway of yeast pyruvate decarboxylase. Li H; Jordan F Biochemistry; 1999 Aug; 38(31):10004-12. PubMed ID: 10433707 [TBL] [Abstract][Full Text] [Related]
16. Kinetics and mechanism of the citrate synthase from the thermophilic archaeon Thermoplasma acidophilum. Kurz LC; Drysdale G; Riley M; Tomar MA; Chen J; Russell RJ; Danson MJ Biochemistry; 2000 Mar; 39(9):2283-96. PubMed ID: 10694395 [TBL] [Abstract][Full Text] [Related]
17. Solvent effects on the fluorescence quenching of tryptophan by amides via electron transfer. Experimental and computational studies. Muiño PL; Callis PR J Phys Chem B; 2009 Mar; 113(9):2572-7. PubMed ID: 18672928 [TBL] [Abstract][Full Text] [Related]
18. Tryptophan fluorescence of the lux-specific Vibrio harveyi acyl-ACP thioesterase and its tryptophan mutants: structural properties and ligand-induced conformational change. Li J; Szittner R; Meighen EA Biochemistry; 1998 Nov; 37(46):16130-8. PubMed ID: 9819205 [TBL] [Abstract][Full Text] [Related]
19. Ab initio QM/MM modelling of acetyl-CoA deprotonation in the enzyme citrate synthase. van der Kamp MW; Perruccio F; Mulholland AJ J Mol Graph Model; 2007 Oct; 26(3):676-90. PubMed ID: 17493853 [TBL] [Abstract][Full Text] [Related]
20. Roles of active site tryptophans in substrate binding and catalysis by alpha-1,3 galactosyltransferase. Zhang Y; Deshpande A; Xie Z; Natesh R; Acharya KR; Brew K Glycobiology; 2004 Dec; 14(12):1295-302. PubMed ID: 15229192 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]