BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 15683227)

  • 1. In the quest for stable rescuing mutants of p53: computational mutagenesis of flexible loop L1.
    Pan Y; Ma B; Venkataraghavan RB; Levine AJ; Nussinov R
    Biochemistry; 2005 Feb; 44(5):1423-32. PubMed ID: 15683227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutants of the tumour suppressor p53 L1 loop as second-site suppressors for restoring DNA binding to oncogenic p53 mutations: structural and biochemical insights.
    Merabet A; Houlleberghs H; Maclagan K; Akanho E; Bui TT; Pagano B; Drake AF; Fraternali F; Nikolova PV
    Biochem J; 2010 Mar; 427(2):225-36. PubMed ID: 20113312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A meanfield approach to the thermodynamics of a protein-solvent system with application to the oligomerization of the tumor suppressor p53.
    Noolandi J; Davison TS; Volkel AR; Nie X; Kay C; Arrowsmith CH
    Proc Natl Acad Sci U S A; 2000 Aug; 97(18):9955-60. PubMed ID: 10944184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis of restoring sequence-specific DNA binding and transactivation to mutant p53 by suppressor mutations.
    Suad O; Rozenberg H; Brosh R; Diskin-Posner Y; Kessler N; Shimon LJ; Frolow F; Liran A; Rotter V; Shakked Z
    J Mol Biol; 2009 Jan; 385(1):249-65. PubMed ID: 18996393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Change in oligomerization specificity of the p53 tetramerization domain by hydrophobic amino acid substitutions.
    Stavridi ES; Chehab NH; Caruso LC; Halazonetis TD
    Protein Sci; 1999 Sep; 8(9):1773-9. PubMed ID: 10493578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nine hydrophobic side chains are key determinants of the thermodynamic stability and oligomerization status of tumour suppressor p53 tetramerization domain.
    Mateu MG; Fersht AR
    EMBO J; 1998 May; 17(10):2748-58. PubMed ID: 9582268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvent-exposed residues located in the beta-sheet modulate the stability of the tetramerization domain of p53--a structural and combinatorial approach.
    Mora P; Carbajo RJ; Pineda-Lucena A; Sánchez del Pino MM; Pérez-Payá E
    Proteins; 2008 Jun; 71(4):1670-85. PubMed ID: 18076077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating mutation data and structural analysis of the TP53 tumor-suppressor protein.
    Martin AC; Facchiano AM; Cuff AL; Hernandez-Boussard T; Olivier M; Hainaut P; Thornton JM
    Hum Mutat; 2002 Feb; 19(2):149-64. PubMed ID: 11793474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amifostine (WR2721) restores transcriptional activity of specific p53 mutant proteins in a yeast functional assay.
    Maurici D; Monti P; Campomenosi P; North S; Frebourg T; Fronza G; Hainaut P
    Oncogene; 2001 Jun; 20(27):3533-40. PubMed ID: 11429700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative analysis of residual folding and DNA binding in mutant p53 core domain: definition of mutant states for rescue in cancer therapy.
    Bullock AN; Henckel J; Fersht AR
    Oncogene; 2000 Mar; 19(10):1245-56. PubMed ID: 10713666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Zn2+ on DNA recognition and stability of the p53 DNA-binding domain.
    Duan J; Nilsson L
    Biochemistry; 2006 Jun; 45(24):7483-92. PubMed ID: 16768444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis.
    Kato S; Han SY; Liu W; Otsuka K; Shibata H; Kanamaru R; Ishioka C
    Proc Natl Acad Sci U S A; 2003 Jul; 100(14):8424-9. PubMed ID: 12826609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the amino acid sequence in domain swapping of the B1 domain of protein G.
    Sirota FL; Héry-Huynh S; Maurer-Stroh S; Wodak SJ
    Proteins; 2008 Jul; 72(1):88-104. PubMed ID: 18186476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of a superstable mutant of human p53 core domain. Insights into the mechanism of rescuing oncogenic mutations.
    Joerger AC; Allen MD; Fersht AR
    J Biol Chem; 2004 Jan; 279(2):1291-6. PubMed ID: 14534297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic computational alanine scanning: application to p53 oligomerization.
    Chong LT; Swope WC; Pitera JW; Pande VS
    J Mol Biol; 2006 Mar; 357(3):1039-49. PubMed ID: 16457841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and functionality of a designed p53 dimer.
    Davison TS; Nie X; Ma W; Lin Y; Kay C; Benchimol S; Arrowsmith CH
    J Mol Biol; 2001 Mar; 307(2):605-17. PubMed ID: 11254385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic effects of proline introduction on protein stability.
    Prajapati RS; Das M; Sreeramulu S; Sirajuddin M; Srinivasan S; Krishnamurthy V; Ranjani R; Ramakrishnan C; Varadarajan R
    Proteins; 2007 Feb; 66(2):480-91. PubMed ID: 17034035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of rescue of common p53 cancer mutations by second-site suppressor mutations.
    Nikolova PV; Wong KB; DeDecker B; Henckel J; Fersht AR
    EMBO J; 2000 Feb; 19(3):370-8. PubMed ID: 10654936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring sequence/folding space: folding studies on multiple hydrophobic core mutants of ubiquitin.
    Benítez-Cardoza CG; Stott K; Hirshberg M; Went HM; Woolfson DN; Jackson SE
    Biochemistry; 2004 May; 43(18):5195-203. PubMed ID: 15122885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational approaches for predicting the biological effect of p53 missense mutations: a comparison of three sequence analysis based methods.
    Mathe E; Olivier M; Kato S; Ishioka C; Hainaut P; Tavtigian SV
    Nucleic Acids Res; 2006; 34(5):1317-25. PubMed ID: 16522644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.