These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 15683227)
1. In the quest for stable rescuing mutants of p53: computational mutagenesis of flexible loop L1. Pan Y; Ma B; Venkataraghavan RB; Levine AJ; Nussinov R Biochemistry; 2005 Feb; 44(5):1423-32. PubMed ID: 15683227 [TBL] [Abstract][Full Text] [Related]
2. Mutants of the tumour suppressor p53 L1 loop as second-site suppressors for restoring DNA binding to oncogenic p53 mutations: structural and biochemical insights. Merabet A; Houlleberghs H; Maclagan K; Akanho E; Bui TT; Pagano B; Drake AF; Fraternali F; Nikolova PV Biochem J; 2010 Mar; 427(2):225-36. PubMed ID: 20113312 [TBL] [Abstract][Full Text] [Related]
3. A meanfield approach to the thermodynamics of a protein-solvent system with application to the oligomerization of the tumor suppressor p53. Noolandi J; Davison TS; Volkel AR; Nie X; Kay C; Arrowsmith CH Proc Natl Acad Sci U S A; 2000 Aug; 97(18):9955-60. PubMed ID: 10944184 [TBL] [Abstract][Full Text] [Related]
4. Structural basis of restoring sequence-specific DNA binding and transactivation to mutant p53 by suppressor mutations. Suad O; Rozenberg H; Brosh R; Diskin-Posner Y; Kessler N; Shimon LJ; Frolow F; Liran A; Rotter V; Shakked Z J Mol Biol; 2009 Jan; 385(1):249-65. PubMed ID: 18996393 [TBL] [Abstract][Full Text] [Related]
5. Change in oligomerization specificity of the p53 tetramerization domain by hydrophobic amino acid substitutions. Stavridi ES; Chehab NH; Caruso LC; Halazonetis TD Protein Sci; 1999 Sep; 8(9):1773-9. PubMed ID: 10493578 [TBL] [Abstract][Full Text] [Related]
6. Nine hydrophobic side chains are key determinants of the thermodynamic stability and oligomerization status of tumour suppressor p53 tetramerization domain. Mateu MG; Fersht AR EMBO J; 1998 May; 17(10):2748-58. PubMed ID: 9582268 [TBL] [Abstract][Full Text] [Related]
7. Solvent-exposed residues located in the beta-sheet modulate the stability of the tetramerization domain of p53--a structural and combinatorial approach. Mora P; Carbajo RJ; Pineda-Lucena A; Sánchez del Pino MM; Pérez-Payá E Proteins; 2008 Jun; 71(4):1670-85. PubMed ID: 18076077 [TBL] [Abstract][Full Text] [Related]
8. Integrating mutation data and structural analysis of the TP53 tumor-suppressor protein. Martin AC; Facchiano AM; Cuff AL; Hernandez-Boussard T; Olivier M; Hainaut P; Thornton JM Hum Mutat; 2002 Feb; 19(2):149-64. PubMed ID: 11793474 [TBL] [Abstract][Full Text] [Related]
9. Amifostine (WR2721) restores transcriptional activity of specific p53 mutant proteins in a yeast functional assay. Maurici D; Monti P; Campomenosi P; North S; Frebourg T; Fronza G; Hainaut P Oncogene; 2001 Jun; 20(27):3533-40. PubMed ID: 11429700 [TBL] [Abstract][Full Text] [Related]
10. Quantitative analysis of residual folding and DNA binding in mutant p53 core domain: definition of mutant states for rescue in cancer therapy. Bullock AN; Henckel J; Fersht AR Oncogene; 2000 Mar; 19(10):1245-56. PubMed ID: 10713666 [TBL] [Abstract][Full Text] [Related]
11. Effect of Zn2+ on DNA recognition and stability of the p53 DNA-binding domain. Duan J; Nilsson L Biochemistry; 2006 Jun; 45(24):7483-92. PubMed ID: 16768444 [TBL] [Abstract][Full Text] [Related]
12. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Kato S; Han SY; Liu W; Otsuka K; Shibata H; Kanamaru R; Ishioka C Proc Natl Acad Sci U S A; 2003 Jul; 100(14):8424-9. PubMed ID: 12826609 [TBL] [Abstract][Full Text] [Related]
13. Role of the amino acid sequence in domain swapping of the B1 domain of protein G. Sirota FL; Héry-Huynh S; Maurer-Stroh S; Wodak SJ Proteins; 2008 Jul; 72(1):88-104. PubMed ID: 18186476 [TBL] [Abstract][Full Text] [Related]
14. Crystal structure of a superstable mutant of human p53 core domain. Insights into the mechanism of rescuing oncogenic mutations. Joerger AC; Allen MD; Fersht AR J Biol Chem; 2004 Jan; 279(2):1291-6. PubMed ID: 14534297 [TBL] [Abstract][Full Text] [Related]
16. Structure and functionality of a designed p53 dimer. Davison TS; Nie X; Ma W; Lin Y; Kay C; Benchimol S; Arrowsmith CH J Mol Biol; 2001 Mar; 307(2):605-17. PubMed ID: 11254385 [TBL] [Abstract][Full Text] [Related]
17. Thermodynamic effects of proline introduction on protein stability. Prajapati RS; Das M; Sreeramulu S; Sirajuddin M; Srinivasan S; Krishnamurthy V; Ranjani R; Ramakrishnan C; Varadarajan R Proteins; 2007 Feb; 66(2):480-91. PubMed ID: 17034035 [TBL] [Abstract][Full Text] [Related]
18. Mechanism of rescue of common p53 cancer mutations by second-site suppressor mutations. Nikolova PV; Wong KB; DeDecker B; Henckel J; Fersht AR EMBO J; 2000 Feb; 19(3):370-8. PubMed ID: 10654936 [TBL] [Abstract][Full Text] [Related]
19. Exploring sequence/folding space: folding studies on multiple hydrophobic core mutants of ubiquitin. Benítez-Cardoza CG; Stott K; Hirshberg M; Went HM; Woolfson DN; Jackson SE Biochemistry; 2004 May; 43(18):5195-203. PubMed ID: 15122885 [TBL] [Abstract][Full Text] [Related]
20. Computational approaches for predicting the biological effect of p53 missense mutations: a comparison of three sequence analysis based methods. Mathe E; Olivier M; Kato S; Ishioka C; Hainaut P; Tavtigian SV Nucleic Acids Res; 2006; 34(5):1317-25. PubMed ID: 16522644 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]