These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 15683227)

  • 21. Discrimination of single amino acid mutations of the p53 protein by means of deterministic singularities of recurrence quantification analysis.
    Porrello A; Soddu S; Zbilut JP; Crescenzi M; Giuliani A
    Proteins; 2004 May; 55(3):743-55. PubMed ID: 15103636
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxidation of methionine residue at hydrophobic core destabilizes p53 tetrameric structure.
    Nomura T; Kamada R; Ito I; Chuman Y; Shimohigashi Y; Sakaguchi K
    Biopolymers; 2009 Jan; 91(1):78-84. PubMed ID: 18781628
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of the human and worm p53 structures suggests a way for enhancing stability.
    Pan Y; Ma B; Levine AJ; Nussinov R
    Biochemistry; 2006 Mar; 45(12):3925-33. PubMed ID: 16548519
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cysteine-to-serine mutants of the human copper chaperone for superoxide dismutase reveal a copper cluster at a domain III dimer interface.
    Stasser JP; Eisses JF; Barry AN; Kaplan JH; Blackburn NJ
    Biochemistry; 2005 Mar; 44(9):3143-52. PubMed ID: 15736924
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of hydrogen bond networks and dynamics in positive and negative cooperative stabilization of a protein.
    Redzic JS; Bowler BE
    Biochemistry; 2005 Mar; 44(8):2900-8. PubMed ID: 15723532
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling the interaction between the N-terminal domain of the tumor suppressor p53 and azurin.
    Taranta M; Bizzarri AR; Cannistraro S
    J Mol Recognit; 2009; 22(3):215-22. PubMed ID: 19140135
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A C alpha-H...O hydrogen bond in a membrane protein is not stabilizing.
    Yohannan S; Faham S; Yang D; Grosfeld D; Chamberlain AK; Bowie JU
    J Am Chem Soc; 2004 Mar; 126(8):2284-5. PubMed ID: 14982414
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stability of trimeric OmpF porin: the contributions of the latching loop L2.
    Phale PS; Philippsen A; Kiefhaber T; Koebnik R; Phale VP; Schirmer T; Rosenbusch JP
    Biochemistry; 1998 Nov; 37(45):15663-70. PubMed ID: 9843370
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stabilization of GroEL minichaperones by core and surface mutations.
    Wang Q; Buckle AM; Fersht AR
    J Mol Biol; 2000 May; 298(5):917-26. PubMed ID: 10801358
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of transactivation capability and conformation of p53 temperature-dependent mutants and their reactivation by amifostine in yeast.
    Grochova D; Vankova J; Damborsky J; Ravcukova B; Smarda J; Vojtesek B; Smardova J
    Oncogene; 2008 Feb; 27(9):1243-52. PubMed ID: 17724467
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of protein mutant stability using classification and regression tool.
    Huang LT; Saraboji K; Ho SY; Hwang SF; Ponnuswamy MN; Gromiha MM
    Biophys Chem; 2007 Feb; 125(2-3):462-70. PubMed ID: 17113702
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mutational analysis of the p53 core domain L1 loop.
    Zupnick A; Prives C
    J Biol Chem; 2006 Jul; 281(29):20464-73. PubMed ID: 16687402
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Docking study and free energy simulation of the complex between p53 DNA-binding domain and azurin.
    De Grandis V; Bizzarri AR; Cannistraro S
    J Mol Recognit; 2007; 20(4):215-26. PubMed ID: 17703463
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Agonist-induced conformational changes in thyrotropin-releasing hormone receptor type I: disulfide cross-linking and molecular modeling approaches.
    Huang W; Osman R; Gershengorn MC
    Biochemistry; 2005 Feb; 44(7):2419-31. PubMed ID: 15709754
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accurate prediction of stability changes in protein mutants by combining machine learning with structure based computational mutagenesis.
    Masso M; Vaisman II
    Bioinformatics; 2008 Sep; 24(18):2002-9. PubMed ID: 18632749
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure-based stability engineering of the mouse IgG1 Fab fragment by modifying constant domains.
    Teerinen T; Valjakka J; Rouvinen J; Takkinen K
    J Mol Biol; 2006 Aug; 361(4):687-97. PubMed ID: 16876195
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exhaustive mutagenesis of six secondary active-site residues in Escherichia coli chorismate mutase shows the importance of hydrophobic side chains and a helix N-capping position for stability and catalysis.
    Lassila JK; Keeffe JR; Kast P; Mayo SL
    Biochemistry; 2007 Jun; 46(23):6883-91. PubMed ID: 17506527
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro evolution of thermostable p53 variants.
    Matsumura I; Ellington AD
    Protein Sci; 1999 Apr; 8(4):731-40. PubMed ID: 10211819
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of a function-specific mutation of clathrin heavy chain (CHC) required for p53 transactivation.
    Ohata H; Ota N; Shirouzu M; Yokoyama S; Yokota J; Taya Y; Enari M
    J Mol Biol; 2009 Dec; 394(3):460-71. PubMed ID: 19766654
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relative importance of secondary structure and solvent accessibility to the stability of protein mutants. A case study with amino acid properties and energetics on T4 and human lysozymes.
    Saraboji K; Gromiha MM; Ponnuswamy MN
    Comput Biol Chem; 2005 Feb; 29(1):25-35. PubMed ID: 15680583
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.