These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
332 related articles for article (PubMed ID: 15683391)
21. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Nicol GW; Leininger S; Schleper C; Prosser JI Environ Microbiol; 2008 Nov; 10(11):2966-78. PubMed ID: 18707610 [TBL] [Abstract][Full Text] [Related]
22. PCR-DGGE method to assess the diversity of BTEX mono-oxygenase genes at contaminated sites. Hendrickx B; Dejonghe W; Faber F; Boënne W; Bastiaens L; Verstraete W; Top EM; Springael D FEMS Microbiol Ecol; 2006 Feb; 55(2):262-73. PubMed ID: 16420634 [TBL] [Abstract][Full Text] [Related]
23. Influence of drying-rewetting frequency on soil bacterial community structure. Fierer N; Schimel JP; Holden PA Microb Ecol; 2003 Jan; 45(1):63-71. PubMed ID: 12469245 [TBL] [Abstract][Full Text] [Related]
24. Does disturbance and restoration of alpine grassland soils affect the genetic structure and diversity of bacterial and N2-fixing populations? Gros R; Jocteur Monrozier L; Faivre P Environ Microbiol; 2006 Nov; 8(11):1889-901. PubMed ID: 17014489 [TBL] [Abstract][Full Text] [Related]
25. Stereospecific effect of hexachlorocyclohexane on activity and structure of soil methanotrophic communities. Mertens B; Boon N; Verstraete W Environ Microbiol; 2005 May; 7(5):660-9. PubMed ID: 15819848 [TBL] [Abstract][Full Text] [Related]
26. Metabolic and bacterial diversity in soils historically contaminated by heavy metals and hydrocarbons. Vivas A; Moreno B; del Val C; Macci C; Masciandaro G; Benitez E J Environ Monit; 2008 Nov; 10(11):1287-96. PubMed ID: 18974897 [TBL] [Abstract][Full Text] [Related]
27. Do conventionally and biologically cultivated soils differ in bacterial diversity and community structure? Seghers D; Reheul D; Bulcke R; Verstraete W; Top EM Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(3b):381-8. PubMed ID: 15954622 [TBL] [Abstract][Full Text] [Related]
28. The selection of mixed microbial inocula in environmental biotechnology: example using petroleum contaminated tropical soils. Supaphol S; Panichsakpatana S; Trakulnaleamsai S; Tungkananuruk N; Roughjanajirapa P; O'Donnell AG J Microbiol Methods; 2006 Jun; 65(3):432-41. PubMed ID: 16226327 [TBL] [Abstract][Full Text] [Related]
29. Stress responses investigated; application of zinc and heat to Terrestrial Model Ecosystems from heavy metal polluted grassland. Kools SA; Berg MP; Boivin ME; Kuenen FJ; van der Wurff AW; van Gestel CA; van Straalen NM Sci Total Environ; 2008 Dec; 406(3):462-8. PubMed ID: 18701139 [TBL] [Abstract][Full Text] [Related]
30. Microbial diversity and activity along the forefields of two receding glaciers. Sigler WV; Zeyer J Microb Ecol; 2002 May; 43(4):397-407. PubMed ID: 11953808 [TBL] [Abstract][Full Text] [Related]
31. Bacterial community shifts in organically perturbed sediments. Bissett A; Burke C; Cook PL; Bowman JP Environ Microbiol; 2007 Jan; 9(1):46-60. PubMed ID: 17227411 [TBL] [Abstract][Full Text] [Related]
32. Bacterial community evaluation during establishment of tall fescue (Festuca arundinacea) in soil contaminated with pyrene. Chen YC; Banks MK Int J Phytoremediation; 2004; 6(3):227-38. PubMed ID: 15554475 [TBL] [Abstract][Full Text] [Related]
33. Resilience of the rhizosphere Pseudomonas and ammonia-oxidizing bacterial populations during phytoextraction of heavy metal polluted soil with poplar. Frey B; Pesaro M; Rüdt A; Widmer F Environ Microbiol; 2008 Jun; 10(6):1433-49. PubMed ID: 18279346 [TBL] [Abstract][Full Text] [Related]
34. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Chu H; Fierer N; Lauber CL; Caporaso JG; Knight R; Grogan P Environ Microbiol; 2010 Nov; 12(11):2998-3006. PubMed ID: 20561020 [TBL] [Abstract][Full Text] [Related]
35. The dynamics of soil bacterial community structure in response to yearly repeated agricultural copper treatments. Ranjard L; Nowak V; Echairi A; Faloya V; Chaussod R Res Microbiol; 2008 May; 159(4):251-4. PubMed ID: 18434097 [TBL] [Abstract][Full Text] [Related]
36. Effect of copper on phospholipid fatty acid composition of microbial communities in two red soils. Yao HY; Liu YY; Xue D; Huang CY J Environ Sci (China); 2006; 18(3):503-9. PubMed ID: 17294647 [TBL] [Abstract][Full Text] [Related]
37. Microbial community succession and bacterial diversity in soils during 77,000 years of ecosystem development. Tarlera S; Jangid K; Ivester AH; Whitman WB; Williams MA FEMS Microbiol Ecol; 2008 Apr; 64(1):129-40. PubMed ID: 18328082 [TBL] [Abstract][Full Text] [Related]
38. Alteration and resilience of the soil microbial community following compost amendment: effects of compost level and compost-borne microbial community. Saison C; Degrange V; Oliver R; Millard P; Commeaux C; Montange D; Le Roux X Environ Microbiol; 2006 Feb; 8(2):247-57. PubMed ID: 16423013 [TBL] [Abstract][Full Text] [Related]
39. Field and microcosm experiments to evaluate the effects of agricultural Cu treatment on the density and genetic structure of microbial communities in two different soils. Ranjard L; Echairi A; Nowak V; Lejon DP; Nouaïm R; Chaussod R FEMS Microbiol Ecol; 2006 Nov; 58(2):303-15. PubMed ID: 17064271 [TBL] [Abstract][Full Text] [Related]
40. Diversity surveys of soil bacterial community by cultivation--based methods and molecular fingerprinting techniques. Luo HF; Qi HY; Zhang HX J Environ Sci (China); 2004; 16(4):581-4. PubMed ID: 15495960 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]