These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 15683394)
21. Members of the phylum Acidobacteria are dominant and metabolically active in rhizosphere soil. Lee SH; Ka JO; Cho JC FEMS Microbiol Lett; 2008 Aug; 285(2):263-9. PubMed ID: 18557943 [TBL] [Abstract][Full Text] [Related]
22. Microbial diversity and activity along the forefields of two receding glaciers. Sigler WV; Zeyer J Microb Ecol; 2002 May; 43(4):397-407. PubMed ID: 11953808 [TBL] [Abstract][Full Text] [Related]
23. Microbial biodiversity of thermophilic communities in hot mineral soils of Tramway Ridge, Mount Erebus, Antarctica. Soo RM; Wood SA; Grzymski JJ; McDonald IR; Cary SC Environ Microbiol; 2009 Mar; 11(3):715-28. PubMed ID: 19278453 [TBL] [Abstract][Full Text] [Related]
24. Shifts in desulfonating bacterial communities along a soil chronosequence in the forefield of a receding glacier. Schmalenberger A; Noll M FEMS Microbiol Ecol; 2010 Feb; 71(2):208-17. PubMed ID: 19903199 [TBL] [Abstract][Full Text] [Related]
25. Microbial community succession and bacterial diversity in soils during 77,000 years of ecosystem development. Tarlera S; Jangid K; Ivester AH; Whitman WB; Williams MA FEMS Microbiol Ecol; 2008 Apr; 64(1):129-40. PubMed ID: 18328082 [TBL] [Abstract][Full Text] [Related]
26. Archaea in the Gulf of Aqaba. Ionescu D; Penno S; Haimovich M; Rihtman B; Goodwin A; Schwartz D; Hazanov L; Chernihovsky M; Post AF; Oren A FEMS Microbiol Ecol; 2009 Sep; 69(3):425-38. PubMed ID: 19583788 [TBL] [Abstract][Full Text] [Related]
27. Effects of model root exudates on structure and activity of a soil diazotroph community. Bürgmann H; Meier S; Bunge M; Widmer F; Zeyer J Environ Microbiol; 2005 Nov; 7(11):1711-24. PubMed ID: 16232286 [TBL] [Abstract][Full Text] [Related]
28. Depth-related change in archaeal community structure in a freshwater lake sediment as determined with denaturing gradient gel electrophoresis of amplified 16S rRNA genes and reversely transcribed rRNA fragments. Koizumi Y; Takii S; Fukui M FEMS Microbiol Ecol; 2004 May; 48(2):285-92. PubMed ID: 19712411 [TBL] [Abstract][Full Text] [Related]
29. Archaeal diversity in naturally occurring and impacted environments from a tropical region. Clementino MM; Fernandes CC; Vieira RP; Cardoso AM; Polycarpo CR; Martins OB J Appl Microbiol; 2007 Jul; 103(1):141-51. PubMed ID: 17584460 [TBL] [Abstract][Full Text] [Related]
30. DGGE method for analyzing 16S rDNA of methanogenic archaeal community in paddy field soil. Watanabe T; Asakawa S; Nakamura A; Nagaoka K; Kimura M FEMS Microbiol Lett; 2004 Mar; 232(2):153-63. PubMed ID: 15033234 [TBL] [Abstract][Full Text] [Related]
31. Crenarchaeota affiliated with group 1.1b are prevalent in coastal mineral soils of the Ross Sea region of Antarctica. Ayton J; Aislabie J; Barker GM; Saul D; Turner S Environ Microbiol; 2010 Mar; 12(3):689-703. PubMed ID: 20002141 [TBL] [Abstract][Full Text] [Related]
32. Analysis of bacterial communities in the rhizosphere of chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA as well as DNA fragments coding for 16S rRNA. Duineveld BM; Kowalchuk GA; Keijzer A; van Elsas JD; van Veen JA Appl Environ Microbiol; 2001 Jan; 67(1):172-8. PubMed ID: 11133442 [TBL] [Abstract][Full Text] [Related]
33. Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. Costa R; Götz M; Mrotzek N; Lottmann J; Berg G; Smalla K FEMS Microbiol Ecol; 2006 May; 56(2):236-49. PubMed ID: 16629753 [TBL] [Abstract][Full Text] [Related]
34. Resilience of the rhizosphere Pseudomonas and ammonia-oxidizing bacterial populations during phytoextraction of heavy metal polluted soil with poplar. Frey B; Pesaro M; Rüdt A; Widmer F Environ Microbiol; 2008 Jun; 10(6):1433-49. PubMed ID: 18279346 [TBL] [Abstract][Full Text] [Related]
35. Effects of water regime on archaeal community composition in Arctic soils. Høj L; Rusten M; Haugen LE; Olsen RA; Torsvik VL Environ Microbiol; 2006 Jun; 8(6):984-96. PubMed ID: 16689719 [TBL] [Abstract][Full Text] [Related]
36. Acinetobacter diversity in environmental samples assessed by 16S rRNA gene PCR-DGGE fingerprinting. Vanbroekhoven K; Ryngaert A; Wattiau P; Mot R; Springael D FEMS Microbiol Ecol; 2004 Oct; 50(1):37-50. PubMed ID: 19712375 [TBL] [Abstract][Full Text] [Related]
37. Methanogenic communities in permafrost-affected soils of the Laptev Sea coast, Siberian Arctic, characterized by 16S rRNA gene fingerprints. Ganzert L; Jurgens G; Münster U; Wagner D FEMS Microbiol Ecol; 2007 Feb; 59(2):476-88. PubMed ID: 16978241 [TBL] [Abstract][Full Text] [Related]
38. Molecular analysis of bacterial community succession during prolonged compost curing. Danon M; Franke-Whittle IH; Insam H; Chen Y; Hadar Y FEMS Microbiol Ecol; 2008 Jul; 65(1):133-44. PubMed ID: 18537836 [TBL] [Abstract][Full Text] [Related]
39. Physiology, phylogeny and in situ evidence for bacterial and archaeal nitrifiers in the marine sponge Aplysina aerophoba. Bayer K; Schmitt S; Hentschel U Environ Microbiol; 2008 Nov; 10(11):2942-55. PubMed ID: 18363713 [TBL] [Abstract][Full Text] [Related]
40. Links between archaeal community structure, vegetation type and methanogenic pathway in Alaskan peatlands. Rooney-Varga JN; Giewat MW; Duddleston KN; Chanton JP; Hines ME FEMS Microbiol Ecol; 2007 May; 60(2):240-51. PubMed ID: 17316328 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]