These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 15683996)
1. [In vitro biocompatibility of novel absorbable hydroxyapatite and AO artificial bone beta-tricalcium phosphate with rhesus bone marrow stromal cells]. Wang QL; Pei GX; Zeng XL; Jin D; Wei KH; Liu XX; Zhong SZ; Ou YJ Di Yi Jun Yi Da Xue Xue Bao; 2005 Jan; 25(1):44-7. PubMed ID: 15683996 [TBL] [Abstract][Full Text] [Related]
2. [New porous beta-tricalcium phosphate as scaffold for bone tissue engineering]. Liu Y; Pei G; Jiang S Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Oct; 21(10):1123-7. PubMed ID: 17990783 [TBL] [Abstract][Full Text] [Related]
3. Hydroxyapatite/tricalcium phosphate matrix scaffold as cell carriers in vitro. Mao XZ; Zhou JN; Hu JZ; Ruan JM; Wang WC; Ni JD Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2004 Aug; 29(4):371-5. PubMed ID: 16134582 [TBL] [Abstract][Full Text] [Related]
4. [Preparation of recombinant human bone morphogenetic protein 2 decorated beta tricalcium phosphate/collagen and preliminary studies on its properties of inducing tooth formation]. Zhang W; Liu J; Wang H; Li Z Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2011 Feb; 25(2):149-54. PubMed ID: 21427841 [TBL] [Abstract][Full Text] [Related]
5. Biofabrication of a PLGA-TCP-based porous bioactive bone substitute with sustained release of icaritin. Xie XH; Wang XL; Zhang G; He YX; Leng Y; Tang TT; Pan X; Qin L J Tissue Eng Regen Med; 2015 Aug; 9(8):961-72. PubMed ID: 23255530 [TBL] [Abstract][Full Text] [Related]
6. Molecular mechanisms of biomaterial-driven osteogenic differentiation in human mesenchymal stromal cells. Barradas AM; Monticone V; Hulsman M; Danoux C; Fernandes H; Tahmasebi Birgani Z; Barrère-de Groot F; Yuan H; Reinders M; Habibovic P; van Blitterswijk C; de Boer J Integr Biol (Camb); 2013 Jul; 5(7):920-31. PubMed ID: 23752904 [TBL] [Abstract][Full Text] [Related]
7. [An experimental study on repairing bone defect with composite of beta-tricalcium phosphate-hyaluronic acid-type I collagen-marrow stromal cells]. Wei A; Liu S; Peng H; Tao H Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Jun; 19(6):468-72. PubMed ID: 16038466 [TBL] [Abstract][Full Text] [Related]
8. [Green fluorescent protein as a tracer of bone marrow stromal cells in bone tissue engineering in rhesus]. Wang QL; Pei GX; Yun X; Jin D; Wei KH; Ren GH Nan Fang Yi Ke Da Xue Xue Bao; 2007 Feb; 27(2):156-9. PubMed ID: 17355924 [TBL] [Abstract][Full Text] [Related]
9. Novel ceramic bone replacement material CeraBall seeded with human mesenchymal stem cells. Douglas T; Liu Q; Humpe A; Wiltfang J; Sivananthan S; Warnke PH Clin Oral Implants Res; 2010 Mar; 21(3):262-7. PubMed ID: 19958377 [TBL] [Abstract][Full Text] [Related]
10. Osteogenesis of the construct combined BMSCs with beta-TCP in rat. Zhang M; Wang K; Shi Z; Yang H; Dang X; Wang W J Plast Reconstr Aesthet Surg; 2010 Feb; 63(2):227-32. PubMed ID: 19091642 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of the osteoconductivity of α-tricalcium phosphate, β-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect. Rojbani H; Nyan M; Ohya K; Kasugai S J Biomed Mater Res A; 2011 Sep; 98(4):488-98. PubMed ID: 21681941 [TBL] [Abstract][Full Text] [Related]
12. The effect of different mineral frames on ectopic bone formation in mouse hind leg muscles induced by native reindeer bone morphogenetic protein. Pekkarinen T; Lindholm TS; Hietala O; Jalovaara P Arch Orthop Trauma Surg; 2005 Feb; 125(1):10-5. PubMed ID: 15723244 [TBL] [Abstract][Full Text] [Related]
13. Enhanced bone regeneration with a novel synthetic bone substitute in combination with a new natural cross-linked collagen membrane: radiographic and histomorphometric study. Calvo-Guirado JL; Ramírez-Fernández MP; Maté-Sánchez JE; Bruno N; Velasquez P; de Aza PN Clin Oral Implants Res; 2015 Apr; 26(4):454-464. PubMed ID: 24720519 [TBL] [Abstract][Full Text] [Related]
14. In vitro degradation and cell response of calcium carbonate composite ceramic in comparison with other synthetic bone substitute materials. He F; Zhang J; Yang F; Zhu J; Tian X; Chen X Mater Sci Eng C Mater Biol Appl; 2015 May; 50():257-65. PubMed ID: 25746269 [TBL] [Abstract][Full Text] [Related]
15. Bone augmentation osteogenesis using hydroxyapatite and beta-tricalcium phosphate blocks. Fujita R; Yokoyama A; Kawasaki T; Kohgo T J Oral Maxillofac Surg; 2003 Sep; 61(9):1045-53. PubMed ID: 12966480 [TBL] [Abstract][Full Text] [Related]
16. Kinetics of in vivo bone deposition by bone marrow stromal cells within a resorbable porous calcium phosphate scaffold: an X-ray computed microtomography study. Papadimitropoulos A; Mastrogiacomo M; Peyrin F; Molinari E; Komlev VS; Rustichelli F; Cancedda R Biotechnol Bioeng; 2007 Sep; 98(1):271-81. PubMed ID: 17657771 [TBL] [Abstract][Full Text] [Related]
17. Preparation of bioactive β-tricalcium phosphate microspheres as bone graft substitute materials. Li B; Liu Z; Yang J; Yi Z; Xiao W; Liu X; Yang X; Xu W; Liao X Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 2):1200-1205. PubMed ID: 27772722 [TBL] [Abstract][Full Text] [Related]
18. In vivo bone formation by human bone marrow stromal cells: effect of carrier particle size and shape. Mankani MH; Kuznetsov SA; Fowler B; Kingman A; Robey PG Biotechnol Bioeng; 2001 Jan; 72(1):96-107. PubMed ID: 11084599 [TBL] [Abstract][Full Text] [Related]
19. A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation. Arinzeh TL; Tran T; Mcalary J; Daculsi G Biomaterials; 2005 Jun; 26(17):3631-8. PubMed ID: 15621253 [TBL] [Abstract][Full Text] [Related]
20. [Influence of dosage on cell biocompatibility of hydroxyapatite/tricalcium phosphate]. Zhang Z; Lu XF; Wang ZM; Lu B; Cheng JQ; Li YP Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2002 Mar; 16(2):134-8. PubMed ID: 11944522 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]