BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 15684096)

  • 1. Increased excitability of acidified skeletal muscle: role of chloride conductance.
    Pedersen TH; de Paoli F; Nielsen OB
    J Gen Physiol; 2005 Feb; 125(2):237-46. PubMed ID: 15684096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Additive protective effects of the addition of lactic acid and adrenaline on excitability and force in isolated rat skeletal muscle depressed by elevated extracellular K+.
    de Paoli FV; Overgaard K; Pedersen TH; Nielsen OB
    J Physiol; 2007 Jun; 581(Pt 2):829-39. PubMed ID: 17347268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reducing chloride conductance prevents hyperkalaemia-induced loss of twitch force in rat slow-twitch muscle.
    van Emst MG; Klarenbeek S; Schot A; Plomp JJ; Doornenbal A; Everts ME
    J Physiol; 2004 Nov; 561(Pt 1):169-81. PubMed ID: 15345748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lactate per se improves the excitability of depolarized rat skeletal muscle by reducing the Cl- conductance.
    de Paoli FV; Ørtenblad N; Pedersen TH; Jørgensen R; Nielsen OB
    J Physiol; 2010 Dec; 588(Pt 23):4785-94. PubMed ID: 20876199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of transverse-tubular chloride conductance on excitability in skinned skeletal muscle fibres of rat and toad.
    Coonan JR; Lamb GD
    J Physiol; 1998 Jun; 509 ( Pt 2)(Pt 2):551-64. PubMed ID: 9575303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protective effects of lactic acid on force production in rat skeletal muscle.
    Nielsen OB; de Paoli F; Overgaard K
    J Physiol; 2001 Oct; 536(Pt 1):161-6. PubMed ID: 11579166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of ClC-1 and KATP channels in action potential-firing fast-twitch muscle fibers.
    Pedersen TH; de Paoli FV; Flatman JA; Nielsen OB
    J Gen Physiol; 2009 Oct; 134(4):309-22. PubMed ID: 19786584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chloride conductance in the transverse tubular system of rat skeletal muscle fibres: importance in excitation-contraction coupling and fatigue.
    Dutka TL; Murphy RM; Stephenson DG; Lamb GD
    J Physiol; 2008 Feb; 586(3):875-87. PubMed ID: 18033812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of force induced by high extracellular [K+] in rat muscle: effect of temperature, lactic acid and beta2-agonist.
    Pedersen TH; Clausen T; Nielsen OB
    J Physiol; 2003 Aug; 551(Pt 1):277-86. PubMed ID: 12813152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of physiological ClC-1 Cl- ion channel regulation for the excitability and function of working skeletal muscle.
    Pedersen TH; Riisager A; de Paoli FV; Chen TY; Nielsen OB
    J Gen Physiol; 2016 Apr; 147(4):291-308. PubMed ID: 27022190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of lactic acid and catecholamines on contractility in fast-twitch muscles exposed to hyperkalemia.
    Hansen AK; Clausen T; Nielsen OB
    Am J Physiol Cell Physiol; 2005 Jul; 289(1):C104-12. PubMed ID: 15743886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of 8 wk of voluntary unloaded wheel running on K+ tolerance and excitability of soleus muscles in rat.
    Broch-Lips M; de Paoli F; Pedersen TH; Overgaard K; Nielsen OB
    J Appl Physiol (1985); 2011 Jul; 111(1):212-20. PubMed ID: 21551010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relations between excitability and contractility in rat soleus muscle: role of the Na+-K+ pump and Na+/K+ gradients.
    Overgaard K; Nielsen OB; Flatman JA; Clausen T
    J Physiol; 1999 Jul; 518(Pt 1):215-25. PubMed ID: 10373703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GABAA receptor activation and the excitability of nerve terminals in the rat posterior pituitary.
    Zhang SJ; Jackson MB
    J Physiol; 1995 Mar; 483 ( Pt 3)(Pt 3):583-95. PubMed ID: 7776245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lactic acid restores skeletal muscle force in an in vitro fatigue model: are voltage-gated chloride channels involved?
    Bandschapp O; Soule CL; Iaizzo PA
    Am J Physiol Cell Physiol; 2012 Apr; 302(7):C1019-25. PubMed ID: 22237405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between membrane Cl- conductance and contractile endurance in isolated rat muscles.
    de Paoli FV; Broch-Lips M; Pedersen TH; Nielsen OB
    J Physiol; 2013 Jan; 591(2):531-45. PubMed ID: 23045345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of calcitonin gene-related peptide on rat soleus muscle excitability: mechanisms and physiological significance.
    Macdonald WA; Nielsen OB; Clausen T
    Am J Physiol Regul Integr Comp Physiol; 2008 Oct; 295(4):R1214-23. PubMed ID: 18650319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein kinase C-dependent regulation of ClC-1 channels in active human muscle and its effect on fast and slow gating.
    Riisager A; de Paoli FV; Yu WP; Pedersen TH; Chen TY; Nielsen OB
    J Physiol; 2016 Jun; 594(12):3391-406. PubMed ID: 26857341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exercise and fatigue: integrating the role of K
    Renaud JM; Ørtenblad N; McKenna MJ; Overgaard K
    Eur J Appl Physiol; 2023 Nov; 123(11):2345-2378. PubMed ID: 37584745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular acidosis enhances the excitability of working muscle.
    Pedersen TH; Nielsen OB; Lamb GD; Stephenson DG
    Science; 2004 Aug; 305(5687):1144-7. PubMed ID: 15326352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.