BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 15684582)

  • 1. Augmented ciliary reorientation response and cAMP-dependent protein phosphorylation induced by glycerol in triton-extracted Paramecium.
    Noguchi M; Kitani T; Ogawa T; Inoue H; Kamachi H
    Zoolog Sci; 2005 Jan; 22(1):41-8. PubMed ID: 15684582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of ciliary orientation through cAMP-dependent phosphorylation of axonemal proteins in paramecium caudatum.
    Noguchi M; Ogawa T; Taneyama T
    Cell Motil Cytoskeleton; 2000 Apr; 45(4):263-71. PubMed ID: 10744859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein phosphatase 2C is involved in the cAMP-dependent ciliary control in Paramecium caudatum.
    Noguchi M; Sasaki JY; Kamachi H; Inoue H
    Cell Motil Cytoskeleton; 2003 Feb; 54(2):95-104. PubMed ID: 12529856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylation of endogenous proteins of cilia from Paramecium tetraurelia in vitro.
    Eistetter H; Seckler B; Bryniok D; Schultz JE
    Eur J Cell Biol; 1983 Sep; 31(2):220-6. PubMed ID: 6315438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro phosphorylation of Paramecium axonemes and permeabilized cells.
    Hamasaki T; Murtaugh TJ; Satir BH; Satir P
    Cell Motil Cytoskeleton; 1989; 12(1):1-11. PubMed ID: 2539909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Outer dynein arm light chain 1 is essential for controlling the ciliary response to cyclic AMP in Paramecium tetraurelia.
    Kutomi O; Hori M; Ishida M; Tominaga T; Kamachi H; Koll F; Cohen J; Yamada N; Noguchi M
    Eukaryot Cell; 2012 May; 11(5):645-53. PubMed ID: 22427431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ciliary beat frequency is controlled by a dynein light chain phosphorylation.
    Satir P; Barkalow K; Hamasaki T
    Biophys J; 1995 Apr; 68(4 Suppl):222S. PubMed ID: 7787076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of axonemal Mg2+-ATPase from Paramecium cilia: effects of Ca2+ and cyclic nucleotides.
    Travis SM; Nelson DL
    Biochim Biophys Acta; 1988 Jul; 966(1):84-93. PubMed ID: 2968817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of ciliary reversal in triton-extracted Paramecium by calcium and cyclic adenosine monophosphate.
    Nakaoka Y; Ooi H
    J Cell Sci; 1985 Aug; 77():185-95. PubMed ID: 3003129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphoproteins associated with cyclic nucleotide stimulation of ciliary motility in Paramecium.
    Bonini NM; Nelson DL
    J Cell Sci; 1990 Feb; 95 ( Pt 2)():219-30. PubMed ID: 2164518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inactivation of Ca2+-induced ciliary reversal by high-salt extraction in the cilia of Paramecium.
    Kutomi O; Seki M; Nakamura S; Kamachi H; Noguchi M
    Protoplasma; 2013 Oct; 250(5):1219-27. PubMed ID: 23636433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein substrates for cGMP-dependent protein phosphorylation in cilia of wild type and atalanta mutants of Paramecium.
    Ann KS; Nelson DL
    Cell Motil Cytoskeleton; 1995; 30(4):252-60. PubMed ID: 7796456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of the ciliary beat by cyclic nucleotides in intact cortical sheets from Paramecium.
    Noguchi M; Kurahashi S; Kamachi H; Inoue H
    Zoolog Sci; 2004 Dec; 21(12):1167-75. PubMed ID: 15613797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclic AMP-dependent phosphorylation of a 26 kD axonemal protein in ovine cilia isolated from small tissue pieces.
    Salathe M; Pratt MM; Wanner A
    Am J Respir Cell Mol Biol; 1993 Sep; 9(3):306-14. PubMed ID: 8398168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro phosphorylation of ciliary dyneins by protein kinases from Paramecium.
    Walczak CE; Nelson DL
    J Cell Sci; 1993 Dec; 106 ( Pt 4)():1369-76. PubMed ID: 8126114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. cAMP-stimulated phosphorylation of an axonemal polypeptide that copurifies with the 22S dynein arm regulates microtubule translocation velocity and swimming speed in Paramecium.
    Hamasaki T; Barkalow K; Richmond J; Satir P
    Proc Natl Acad Sci U S A; 1991 Sep; 88(18):7918-22. PubMed ID: 1654550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of spin-labeled maleimide on 14S and 30S dyneins in solution and on demembranated ciliary axonemes.
    Blum JJ; Hayes A; Whisnant CC; Rosen G
    Biochemistry; 1977 May; 16(9):1937-43. PubMed ID: 192283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cilia of Paramecium tetraurelia contain both Ca2+-dependent and Ca2+-inhibitable calmodulin-binding proteins.
    Evans TC; Nelson DL
    Biochem J; 1989 Apr; 259(2):385-96. PubMed ID: 2719655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactivation of extracted Paramecium models.
    Naitoh Y
    Methods Cell Biol; 1995; 47():211-24. PubMed ID: 7476490
    [No Abstract]   [Full Text] [Related]  

  • 20. Biochemical studies of the excitable membrane of Paramecium tetraurelia VI. Endogenous protein substrates for in vitro and in vivo phosphorylation in cilia and ciliary membranes.
    Lewis RM; Nelson DL
    J Cell Biol; 1981 Oct; 91(1):167-74. PubMed ID: 6271790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.