BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 15684683)

  • 1. Structural and functional optical imaging of three-dimensional engineered tissue development.
    Tan W; Sendemir-Urkmez A; Fahrner LJ; Jamison R; Leckband D; Boppart SA
    Tissue Eng; 2004; 10(11-12):1747-56. PubMed ID: 15684683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging cellular responses to mechanical stimuli within three-dimensional tissue constructs.
    Tan W; Vinegoni C; Norman JJ; Desai TA; Boppart SA
    Microsc Res Tech; 2007 Apr; 70(4):361-71. PubMed ID: 17262787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of imaging methodologies for 3D tissue engineering.
    Smith LE; Smallwood R; Macneil S
    Microsc Res Tech; 2010 Dec; 73(12):1123-33. PubMed ID: 20981758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging engineered tissues using structural and functional optical coherence tomography.
    Liang X; Graf BW; Boppart SA
    J Biophotonics; 2009 Nov; 2(11):643-55. PubMed ID: 19672880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of optical clearing and optical sectioning microscopy for three-dimensional imaging of natural biomaterial scaffolds in thin sections.
    Tseng SJ; Lee YH; Chen ZH; Lin HH; Lin CY; Tang SC
    J Biomed Opt; 2009; 14(4):044004. PubMed ID: 19725716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging and characterization of bioengineered blood vessels within a bioreactor using free-space and catheter-based OCT.
    Gurjarpadhye AA; Whited BM; Sampson A; Niu G; Sharma KS; Vogt WC; Wang G; Xu Y; Soker S; Rylander MN; Rylander CG
    Lasers Surg Med; 2013 Aug; 45(6):391-400. PubMed ID: 23740768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Speckle variance detection of microvasculature using swept-source optical coherence tomography.
    Mariampillai A; Standish BA; Moriyama EH; Khurana M; Munce NR; Leung MK; Jiang J; Cable A; Wilson BC; Vitkin IA; Yang VX
    Opt Lett; 2008 Jul; 33(13):1530-2. PubMed ID: 18594688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motility imaging via optical coherence phase microscopy enables label-free monitoring of tissue growth and viability in 3D tissue-engineering scaffolds.
    Holmes C; Tabrizian M; Bagnaninchi PO
    J Tissue Eng Regen Med; 2015 May; 9(5):641-5. PubMed ID: 23401413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical transillumination tomography for imaging of tissue-engineered blood vessels.
    Gladish JC; Yao G; L'Heureux N; Haidekker MA
    Ann Biomed Eng; 2005 Mar; 33(3):323-7. PubMed ID: 15868722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring local cell viability in engineered tissues: a fast, quantitative, and nondestructive approach.
    Breuls RG; Mol A; Petterson R; Oomens CW; Baaijens FP; Bouten CV
    Tissue Eng; 2003 Apr; 9(2):269-81. PubMed ID: 12740089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic multicomponent engineered tissue reorganization and matrix deposition measured with an integrated nonlinear optical microscopy-optical coherence microscopy system.
    Bai Y; Lee PF; Gibbs HC; Bayless KJ; Yeh AT
    J Biomed Opt; 2014 Mar; 19(3):36014. PubMed ID: 24647972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical coherence elastography of engineered and developing tissue.
    Ko HJ; Tan W; Stack R; Boppart SA
    Tissue Eng; 2006 Jan; 12(1):63-73. PubMed ID: 16499443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiphoton autofluorescence imaging of intratissue elastic fibers.
    König K; Schenke-Layland K; Riemann I; Stock UA
    Biomaterials; 2005 Feb; 26(5):495-500. PubMed ID: 15276357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of optical coherence tomography as an imaging modality in tissue engineering.
    Yang Y; Dubois A; Qin XP; Li J; El Haj A; Wang RK
    Phys Med Biol; 2006 Apr; 51(7):1649-59. PubMed ID: 16552095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tracking nanoparticles in three-dimensional tissue-engineered models using confocal laser scanning microscopy.
    Hearnden V; MacNeil S; Battaglia G
    Methods Mol Biol; 2011; 695():41-51. PubMed ID: 21042964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Confocal scanning microscopy for biomedicine].
    Ge HY; Wang BH
    Zhongguo Yi Liao Qi Xie Za Zhi; 2005 May; 29(3):157-60. PubMed ID: 16124616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new method for quantitative cellular imaging on 3-D scaffolds using fluorescence microscopy.
    Santarelli MF; Sani L; Ahluwalia A; Vozzi G; Landini L; De Rossi D
    IEEE Trans Nanobioscience; 2003 Jun; 2(2):110-7. PubMed ID: 15382667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional imaging in bulk tissue specimens using optical emission tomography: fluorescence preservation during optical clearing.
    Sakhalkar HS; Dewhirst M; Oliver T; Cao Y; Oldham M
    Phys Med Biol; 2007 Apr; 52(8):2035-54. PubMed ID: 17404454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using swept-source optical coherence tomography to monitor the formation of neo-epidermis in tissue-engineered skin.
    Smith LE; Bonesi M; Smallwood R; Matcher SJ; MacNeil S
    J Tissue Eng Regen Med; 2010 Dec; 4(8):652-8. PubMed ID: 20603865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real time responses of fibroblasts to plastically compressed fibrillar collagen hydrogels.
    Ghezzi CE; Muja N; Marelli B; Nazhat SN
    Biomaterials; 2011 Jul; 32(21):4761-72. PubMed ID: 21514662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.