These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 15684770)

  • 1. Uncontrollable stimulation undermines recovery after spinal cord injury.
    Grau JW; Washburn SN; Hook MA; Ferguson AR; Crown ED; Garcia G; Bolding KA; Miranda RC
    J Neurotrauma; 2004 Dec; 21(12):1795-817. PubMed ID: 15684770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence that descending serotonergic systems protect spinal cord plasticity against the disruptive effect of uncontrollable stimulation.
    Crown ED; Grau JW
    Exp Neurol; 2005 Nov; 196(1):164-76. PubMed ID: 16139268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exposure to intermittent nociceptive stimulation under pentobarbital anesthesia disrupts spinal cord function in rats.
    Washburn SN; Patton BC; Ferguson AR; Hudson KL; Grau JW
    Psychopharmacology (Berl); 2007 Jun; 192(2):243-52. PubMed ID: 17297638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Instrumental learning within the spinal cord: underlying mechanisms and implications for recovery after injury.
    Grau JW; Crown ED; Ferguson AR; Washburn SN; Hook MA; Miranda RC
    Behav Cogn Neurosci Rev; 2006 Dec; 5(4):191-239. PubMed ID: 17099112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nociceptive plasticity inhibits adaptive learning in the spinal cord.
    Ferguson AR; Crown ED; Grau JW
    Neuroscience; 2006 Aug; 141(1):421-31. PubMed ID: 16678969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Timing in the absence of supraspinal input I: variable, but not fixed, spaced stimulation of the sciatic nerve undermines spinally-mediated instrumental learning.
    Baumbauer KM; Hoy KC; Huie JR; Hughes AJ; Woller SA; Puga DA; Setlow B; Grau JW
    Neuroscience; 2008 Sep; 155(4):1030-47. PubMed ID: 18674601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preserving and restoring behavioral potential within the spinal cord using an instrumental training paradigm.
    Crown ED; Grau JW
    J Neurophysiol; 2001 Aug; 86(2):845-55. PubMed ID: 11495955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Instrumental learning within the spinal cord: V. Evidence the behavioral deficit observed after noncontingent nociceptive stimulation reflects an intraspinal modification.
    Joynes RL; Ferguson AR; Crown ED; Patton BC; Grau JW
    Behav Brain Res; 2003 May; 141(2):159-70. PubMed ID: 12742252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A re-assessment of treatment with a tyrosine kinase inhibitor (imatinib) on tissue sparing and functional recovery after spinal cord injury.
    Sharp KG; Yee KM; Steward O
    Exp Neurol; 2014 Apr; 254():1-11. PubMed ID: 24440639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurokinin receptors modulate the impact of uncontrollable stimulation on adaptive spinal plasticity.
    Baumbauer KM; Young EE; Hoy KC; Joynes RL
    Behav Neurosci; 2007 Oct; 121(5):1082-94. PubMed ID: 17907839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A noninvasive ultrasonographic method to evaluate bladder function recovery in spinal cord injured rats.
    Keirstead HS; Fedulov V; Cloutier F; Steward O; Duel BP
    Exp Neurol; 2005 Jul; 194(1):120-7. PubMed ID: 15899249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peripheral inflammation undermines the plasticity of the isolated spinal cord.
    Hook MA; Huie JR; Grau JW
    Behav Neurosci; 2008 Feb; 122(1):233-49. PubMed ID: 18298266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Instrumental learning within the spinal cord. II. Evidence for central mediation.
    Crown ED; Ferguson AR; Joynes RL; Grau JW
    Physiol Behav; 2002 Nov; 77(2-3):259-67. PubMed ID: 12419402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soluble cell adhesion molecule L1-Fc promotes locomotor recovery in rats after spinal cord injury.
    Roonprapunt C; Huang W; Grill R; Friedlander D; Grumet M; Chen S; Schachner M; Young W
    J Neurotrauma; 2003 Sep; 20(9):871-82. PubMed ID: 14577865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Promotion of recovery from thoracic spinal cord contusion in rats by stimulation of medullary raphe or its midbrain input.
    Hentall ID; Gonzalez MM
    Neurorehabil Neural Repair; 2012 May; 26(4):374-84. PubMed ID: 22183979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One day of motor training with amphetamine impairs motor recovery following spinal cord injury.
    Wong JK; Steward O
    Exp Neurol; 2012 Feb; 233(2):693-707. PubMed ID: 22078754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A re-assessment of the effects of treatment with an epidermal growth factor receptor (EGFR) inhibitor on recovery of bladder and locomotor function following thoracic spinal cord injury in rats.
    Sharp K; Yee KM; Steward O
    Exp Neurol; 2012 Feb; 233(2):649-59. PubMed ID: 22078761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of hypothermia on sensory-motor function and tissue sparing after spinal cord injury.
    Grulova I; Slovinska L; Nagyova M; Cizek M; Cizkova D
    Spine J; 2013 Dec; 13(12):1881-91. PubMed ID: 24012427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. X-irradiation of the contusion site improves locomotor and histological outcomes in spinal cord-injured rats.
    Zeman RJ; Feng Y; Peng H; Visintainer PF; Moorthy CR; Couldwell WT; Etlinger JD
    Exp Neurol; 2001 Nov; 172(1):228-34. PubMed ID: 11681855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Behavioral and anatomical consequences of repetitive mild thoracic spinal cord contusion injury in the rat.
    Jin Y; Bouyer J; Haas C; Fischer I
    Exp Neurol; 2014 Jul; 257():57-69. PubMed ID: 24786492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.