These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 1568480)

  • 1. Two excited states in aequorin bioluminescence induced by tryptophan modification.
    Ohmiya Y; Ohashi M; Tsuji FI
    FEBS Lett; 1992 Apr; 301(2):197-201. PubMed ID: 1568480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A C-terminal proline is required for bioluminescence of the Ca(2+)-binding photoprotein, aequorin.
    Nomura M; Inouye S; Ohmiya Y; Tsuji FI
    FEBS Lett; 1991 Dec; 295(1-3):63-6. PubMed ID: 1765170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioluminescence of the Ca(2+)-binding photoprotein, aequorin, after histidine modification.
    Ohmiya Y; Tsuji FI
    FEBS Lett; 1993 Apr; 320(3):267-70. PubMed ID: 8462695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioluminescence resonance energy transfer from aequorin to a fluorophore: an artificial jellyfish for applications in multianalyte detection.
    Deo SK; Mirasoli M; Daunert S
    Anal Bioanal Chem; 2005 Apr; 381(7):1387-94. PubMed ID: 15731912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioluminescence of the Ca2+-binding photoprotein aequorin after cysteine modification.
    Kurose K; Inouye S; Sakaki Y; Tsuji FI
    Proc Natl Acad Sci U S A; 1989 Jan; 86(1):80-4. PubMed ID: 2643108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioluminescence and secondary structure properties of aequorin mutants produced for site-specific conjugation and immobilization.
    Lewis JC; López-Moya JJ; Daunert S
    Bioconjug Chem; 2000; 11(1):65-70. PubMed ID: 10639087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aequorin variants with improved bioluminescence properties.
    Dikici E; Qu X; Rowe L; Millner L; Logue C; Deo SK; Ensor M; Daunert S
    Protein Eng Des Sel; 2009 Apr; 22(4):243-8. PubMed ID: 19168563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioluminescent and biochemical properties of Cys-free Ca
    Eremeeva EV; Vysotski ES
    J Photochem Photobiol B; 2017 Sep; 174():97-105. PubMed ID: 28756158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioluminescent and spectroscopic properties of His-Trp-Tyr triad mutants of obelin and aequorin.
    Eremeeva EV; Markova SV; Frank LA; Visser AJ; van Berkel WJ; Vysotski ES
    Photochem Photobiol Sci; 2013 Jun; 12(6):1016-24. PubMed ID: 23525241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral tuning of obelin bioluminescence by mutations of Trp92.
    Malikova NP; Stepanyuk GA; Frank LA; Markova SV; Vysotski ES; Lee J
    FEBS Lett; 2003 Nov; 554(1-2):184-8. PubMed ID: 14596937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slow luminescence kinetics of semi-synthetic aequorin: expression, purification and structure determination of cf3-aequorin.
    Inouye S; Tomabechi Y; Hosoya T; Sekine SI; Shirouzu M
    J Biochem; 2018 Sep; 164(3):247-255. PubMed ID: 29796619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cause of spectral variation in the luminescence of semisynthetic aequorins.
    Shimomura O
    Biochem J; 1995 Mar; 306 ( Pt 2)(Pt 2):537-43. PubMed ID: 7887908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression and characterization of EF-hand I loop mutants of aequorin replaced with other loop sequences of Ca2+-binding proteins: an approach to studying the EF-hand motif of proteins.
    Inouye S; Sahara-Miura Y
    J Biochem; 2016 Jul; 160(1):59-68. PubMed ID: 26896488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral components of bioluminescence of aequorin and obelin.
    Belogurova NV; Kudryasheva NS; Alieva RR; Sizykh AG
    J Photochem Photobiol B; 2008 Aug; 92(2):117-22. PubMed ID: 18602272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The crystal structures of semi-synthetic aequorins.
    Toma S; Chong KT; Nakagawa A; Teranishi K; Inouye S; Shimomura O
    Protein Sci; 2005 Feb; 14(2):409-16. PubMed ID: 15632284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the luminescence properties of aequorin by conjugating to CdSe/ZnS quantum dot nanoparticles: Red shift and slowing decay rate.
    Jalilian N; Shanehsaz M; Sajedi RH; Gharaat M; Ghahremanzadeh R
    J Photochem Photobiol B; 2016 Sep; 162():153-161. PubMed ID: 27371914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-emitting properties of recombinant semi-synthetic aequorins and recombinant fluorescein-conjugated aequorin for measuring cellular calcium.
    Shimomura O; Musicki B; Kishi Y; Inouye S
    Cell Calcium; 1993 May; 14(5):373-8. PubMed ID: 8519061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning and sequence analysis of cDNA for the Ca(2+)-activated photoprotein, clytin.
    Inouye S; Tsuji FI
    FEBS Lett; 1993 Jan; 315(3):343-6. PubMed ID: 8422928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interchange of aequorin and obelin bioluminescence color is determined by substitution of one active site residue of each photoprotein.
    Stepanyuk GA; Golz S; Markova SV; Frank LA; Lee J; Vysotski ES
    FEBS Lett; 2005 Feb; 579(5):1008-14. PubMed ID: 15710383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermostable mutants of the photoprotein aequorin obtained by in vitro evolution.
    Tsuzuki K; Tricoire L; Courjean O; Gibelin N; Rossier J; Lambolez B
    J Biol Chem; 2005 Oct; 280(40):34324-31. PubMed ID: 15972815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.