These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 1568480)

  • 21. Aequorin as a sensitive and selective reporter for detection of dopamine: A photoprotein inhibition assay approach.
    Rahmani H; Sajedi RH
    Int J Biol Macromol; 2019 Feb; 122():677-683. PubMed ID: 30391428
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Red-Shifted Aequorin Variants Incorporating Non-Canonical Amino Acids: Applications in In Vivo Imaging.
    Grinstead KM; Rowe L; Ensor CM; Joel S; Daftarian P; Dikici E; Zingg JM; Daunert S
    PLoS One; 2016; 11(7):e0158579. PubMed ID: 27367859
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of new semisynthetic aequorins with long half-decay time of luminescence to G-protein-coupled receptor assay.
    Inouye S; Iimori R; Sahara Y; Hisada S; Hosoya T
    Anal Biochem; 2010 Dec; 407(2):247-52. PubMed ID: 20800051
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioluminescence immunoassay for thyroxine employing genetically engineered mutant aequorins containing unique cysteine residues.
    Lewis JC; Daunert S
    Anal Chem; 2001 Jul; 73(14):3227-33. PubMed ID: 11476219
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design and characterization of an aequorin-based bacterial biosensor for detection of toluene and related compounds.
    Zeinoddini M; Khajeh K; Behzadian F; Hosseinkhani S; Saeedinia AR; Barjesteh H
    Photochem Photobiol; 2010; 86(5):1071-5. PubMed ID: 20663082
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improving the soluble expression of aequorin in Escherichia coli using the chaperone-based approach by co-expression with artemin.
    Khosrowabadi E; Takalloo Z; Sajedi RH; Khajeh K
    Prep Biochem Biotechnol; 2018; 48(6):483-489. PubMed ID: 29958068
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fusion of Aequorea victoria GFP and aequorin provides their Ca(2+)-induced interaction that results in red shift of GFP absorption and efficient bioluminescence energy transfer.
    Gorokhovatsky AY; Marchenkov VV; Rudenko NV; Ivashina TV; Ksenzenko VN; Burkhardt N; Semisotnov GV; Vinokurov LM; Alakhov YB
    Biochem Biophys Res Commun; 2004 Jul; 320(3):703-11. PubMed ID: 15240105
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evolutionary conservation of EF-hand ΙΙ loop in aequorin: Priority of intensity to decay rate in bioluminescence emission.
    Ebrahimi M; Mohseni A; Khalifeh K; Ranjbar B; Sajedi RH
    Arch Biochem Biophys; 2017 Nov; 634():29-37. PubMed ID: 28970088
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrogen-bond networks between the C-terminus and Arg from the first α-helix stabilize photoprotein molecules.
    Eremeeva EV; Burakova LP; Krasitskaya VV; Kudryavtsev AN; Shimomura O; Frank LA
    Photochem Photobiol Sci; 2014 Mar; 13(3):541-7. PubMed ID: 24463740
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tryptophan fluorescence of human phenylalanine hydroxylase produced in Escherichia coli.
    Knappskog PM; Haavik J
    Biochemistry; 1995 Sep; 34(37):11790-9. PubMed ID: 7547912
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Imaging calcium dynamics in living plants using semi-synthetic recombinant aequorins.
    Knight MR; Read ND; Campbell AK; Trewavas AJ
    J Cell Biol; 1993 Apr; 121(1):83-90. PubMed ID: 8458875
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioluminescence Detection of Superoxide Anion Using Aequorin.
    Rahmani H; Ghavamipour F; Sajedi RH
    Anal Chem; 2019 Oct; 91(20):12768-12774. PubMed ID: 31500415
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Obelin from the bioluminescent marine hydroid Obelia geniculata: cloning, expression, and comparison of some properties with those of other Ca2+-regulated photoproteins.
    Markova SV; Vysotski ES; Blinks JR; Burakova LP; Wang BC; Lee J
    Biochemistry; 2002 Feb; 41(7):2227-36. PubMed ID: 11841214
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Luminescence of aequorin is triggered by the binding of two calcium ions.
    Shimomura O
    Biochem Biophys Res Commun; 1995 Jun; 211(2):359-63. PubMed ID: 7794244
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Circular dichroism and fluorescence spectroscopic properties of the major core protein of feline immunodeficiency virus and its tryptophan mutants. Assignment of the individual contribution of the aromatic sidechains.
    Yélamos B; Núñez E; Gómez-Gutiérrez J; Datta M; Pacheco B; Peterson DL; Gavilanes F
    Eur J Biochem; 1999 Dec; 266(3):1081-9. PubMed ID: 10583405
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Site-specifically labeled photoprotein-thyroxine conjugates using aequorin mutants containing unique cysteine residues: applications for binding assays (Part II).
    Lewis JC; Cullen LC; Daunert S
    Bioconjug Chem; 2000; 11(2):140-5. PubMed ID: 10725089
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stabilisation of recombinant aequorin by polyols: activity, thermostability and limited proteolysis.
    Zeinoddini M; Khajeh K; Hosseinkhani S; Saeedinia AR; Robatjazi SM
    Appl Biochem Biotechnol; 2013 May; 170(2):273-80. PubMed ID: 23504568
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of micro-environment on luminescence of aequorin: the role of amino acids and explicit water molecules on spectroscopic properties of coelenteramide.
    Li ZS; Zou LY; Min CG; Ren AM
    J Photochem Photobiol B; 2013 Oct; 127():94-9. PubMed ID: 23973779
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assignment of the contribution of the tryptophan residues to the circular dichroism spectrum of human carbonic anhydrase II.
    Freskgård PO; Mårtensson LG; Jonasson P; Jonsson BH; Carlsson U
    Biochemistry; 1994 Nov; 33(47):14281-8. PubMed ID: 7947839
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The light-sensitive photoprotein berovin from the bioluminescent ctenophore Beroe abyssicola: a novel type of Ca(2+) -regulated photoprotein.
    Markova SV; Burakova LP; Golz S; Malikova NP; Frank LA; Vysotski ES
    FEBS J; 2012 Mar; 279(5):856-70. PubMed ID: 22230281
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.