These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 15685336)

  • 1. Supported coordination polymerization: a unique way to potent polyolefin carbon nanotube nanocomposites.
    Bonduel D; Mainil M; Alexandre M; Monteverde F; Dubois P
    Chem Commun (Camb); 2005 Feb; (6):781-3. PubMed ID: 15685336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical properties of nanocomposites prepared by in situ polymerization of high-density polyethylene on multiwalled carbon nanotubes.
    Kim J; Hong SM; Kwak S; Seo Y
    Phys Chem Chem Phys; 2009 Dec; 11(46):10851-9. PubMed ID: 19924319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High volume fraction carbon nanotube-epoxy composites.
    Spitalsky Z; Tsoukleri G; Tasis D; Krontiras C; Georga SN; Galiotis C
    Nanotechnology; 2009 Oct; 20(40):405702. PubMed ID: 19738313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The electronic role of DNA-functionalized carbon nanotubes: efficacy for in situ polymerization of conducting polymer nanocomposites.
    Ma Y; Chiu PL; Serrano A; Ali SR; Chen AM; He H
    J Am Chem Soc; 2008 Jun; 130(25):7921-8. PubMed ID: 18517209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel amino-acid-based polymer/multi-walled carbon nanotube bio-nanocomposites: highly water dispersible carbon nanotubes decorated with gold nanoparticles.
    Kumar NA; Bund A; Cho BG; Lim KT; Jeong YT
    Nanotechnology; 2009 Jun; 20(22):225608. PubMed ID: 19436092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly dispersed clay-polyolefin nanocomposites free of compatibilizers, via the in situ polymerization of alpha-olefins by clay-supported catalysts.
    Scott SL; Peoples BC; Yung C; Rojas RS; Khanna V; Sano H; Suzuki T; Shimizu F
    Chem Commun (Camb); 2008 Sep; (35):4186-8. PubMed ID: 18802524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of nanofillers into a granular "nanosupport" for Ziegler-Natta catalysts: towards scalable in situ preparation of polyolefin nanocomposites.
    Qin Y; Wang N; Zhou Y; Huang Y; Niu H; Dong JY
    Macromol Rapid Commun; 2011 Jul; 32(14):1052-9. PubMed ID: 21618321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and characterization of carbon nanotube reinforced poly(methyl methacrylate) nanocomposites.
    Yu S; Juay YK; Young MS
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1852-7. PubMed ID: 18572586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of nanowires with polymer shells using treated carbon nanotube bundles as macro-initiators.
    Liu Y; Tang J; Xin JH
    Chem Commun (Camb); 2004 Dec; (24):2828-9. PubMed ID: 15599427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of functionalization of multi-walled carbon nanotubes on the properties of ethylene vinyl acetate nanocomposites.
    George JJ; Sengupta R; Bhowmick AK
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1913-21. PubMed ID: 18572593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon-nanotube-polymer nanocomposites for field-emission cathodes.
    Connolly T; Smith RC; Hernandez Y; Gun'ko Y; Coleman JN; Carey JD
    Small; 2009 Apr; 5(7):826-31. PubMed ID: 19199333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noncovalent functionalization and solubilization of carbon nanotubes by using a conjugated Zn-porphyrin polymer.
    Cheng F; Adronov A
    Chemistry; 2006 Jun; 12(19):5053-9. PubMed ID: 16671050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoengineering heat transfer performance at carbon nanotube interfaces.
    Xu Z; Buehler MJ
    ACS Nano; 2009 Sep; 3(9):2767-75. PubMed ID: 19702296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrospinning fabrication of high strength and toughness polyimide nanofiber membranes containing multiwalled carbon nanotubes.
    Chen D; Liu T; Zhou X; Tjiu WC; Hou H
    J Phys Chem B; 2009 Jul; 113(29):9741-8. PubMed ID: 19603838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metallocene Based Polyolefin Nanocomposites.
    Kaminsky W
    Materials (Basel); 2014 Mar; 7(3):1995-2013. PubMed ID: 28788552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly dispersed Pt catalysts on single-walled carbon nanotubes and their role in methanol oxidation.
    Kongkanand A; Vinodgopal K; Kuwabata S; Kamat PV
    J Phys Chem B; 2006 Aug; 110(33):16185-8. PubMed ID: 16913738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence of multi-walled carbon nanotube fragmentation induced by sonication during nanotube encapsulation via bulk-suspension polymerization.
    Zaragoza-Contreras EA; Lozano-Rodríguez ED; Román-Aguirre M; Antunez-Flores W; Hernández-Escobar CA; Flores-Gallardo SG; Aguilar-Elguezabal A
    Micron; 2009; 40(5-6):621-7. PubMed ID: 19299150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors.
    Ye JS; Cui HF; Liu X; Lim TM; Zhang WD; Sheu FS
    Small; 2005 May; 1(5):560-5. PubMed ID: 17193486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced field emission from multiwall carbon nanotube films by secondary growth.
    Klinke C; Delvigne E; Barth JV; Kern K
    J Phys Chem B; 2005 Nov; 109(46):21677-80. PubMed ID: 16853815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors.
    Singh R; Pantarotto D; McCarthy D; Chaloin O; Hoebeke J; Partidos CD; Briand JP; Prato M; Bianco A; Kostarelos K
    J Am Chem Soc; 2005 Mar; 127(12):4388-96. PubMed ID: 15783221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.