These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 15686015)

  • 21. Fate of pathogenic microorganisms and indicators in secondary activated sludge wastewater treatment plants.
    Wen Q; Tutuka C; Keegan A; Jin B
    J Environ Manage; 2009 Mar; 90(3):1442-7. PubMed ID: 18977580
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Performance of very shallow ponds treating effluents from UASB reactors.
    von Sperling M; Mascarenhas LC
    Water Sci Technol; 2005; 51(12):83-90. PubMed ID: 16114667
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Granulation in an upflow anaerobic sequencing batch reactor treating disintegrated waste activated sludge.
    Park KY; Kim DY; Chung TH
    Water Sci Technol; 2005; 52(12):105-11. PubMed ID: 16477977
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional analysis of microbial community in phenol-degrading aerobic granules cultivated in SBR.
    Tay ST; Jiang HL; Tay JH
    Water Sci Technol; 2004; 50(10):229-34. PubMed ID: 15656317
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Membrane-flocculation-adsorption hybrid system in wastewater treatment: micro and nano size organic matter removal .
    Vigneswaran S; Shon HK; Boonthanon S; Ngo HH; Aim RB
    Water Sci Technol; 2004; 50(12):265-71. PubMed ID: 15686030
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Formation of aerobic granules in the presence of a synthetic chelating agent.
    Nancharaiah YV; Joshi HM; Krishna Mohan TV; Venugopalan VP; Narasimhan SV
    Environ Pollut; 2008 May; 153(1):37-43. PubMed ID: 18166252
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of organic loading rate on a wastewater treatment process combining moving bed biofilm and membrane reactors.
    Melin E; Leiknes T; Helness H; Rasmussen V; Odegaard H
    Water Sci Technol; 2005; 51(6-7):421-30. PubMed ID: 16004004
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional consortium from aerobic granules under high organic loading rates.
    Adav SS; Lee DJ; Lai JY
    Bioresour Technol; 2009 Jul; 100(14):3465-70. PubMed ID: 19345575
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Start-up, formation and microbial community analysis of aerobic granules in SABR for treatment of organic wastewater containing aniline and chloroanilines].
    Zhu L; Xu XY; Cao DF; Luo WG; Yang YN
    Wei Sheng Wu Xue Bao; 2007 Aug; 47(4):654-61. PubMed ID: 17944367
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Granulation of activated sludge in a pilot-scale sequencing batch reactor for the treatment of low-strength municipal wastewater.
    Ni BJ; Xie WM; Liu SG; Yu HQ; Wang YZ; Wang G; Dai XL
    Water Res; 2009 Feb; 43(3):751-61. PubMed ID: 19059624
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Organics and nitrogen removal and sludge stability in aerobic granular sludge membrane bioreactor.
    Wang J; Wang X; Zhao Z; Li J
    Appl Microbiol Biotechnol; 2008 Jun; 79(4):679-85. PubMed ID: 18465123
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioaugmentation of aerobic sludge granules with a plasmid donor strain for enhanced degradation of 2,4-dichlorophenoxyacetic acid.
    Quan XC; Tang H; Xiong WC; Yang ZF
    J Hazard Mater; 2010 Jul; 179(1-3):1136-42. PubMed ID: 20430519
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of gene-augmentation on the formation, characteristics and microbial community of 2,4-dichlorophenoxyacetic acid degrading aerobic microbial granules.
    Quan XC; Ma JY; Xiong WC; Yang ZF
    J Hazard Mater; 2011 Nov; 196():278-86. PubMed ID: 21962861
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermophilic aerobic granular biomass for enhanced settleability.
    Zitomer DH; Duran M; Albert R; Guven E
    Water Res; 2007 Feb; 41(4):819-25. PubMed ID: 17229452
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Degrading high-strength phenol using aerobic granular sludge.
    Ho KL; Chen YY; Lin B; Lee DJ
    Appl Microbiol Biotechnol; 2010 Feb; 85(6):2009-15. PubMed ID: 19902206
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioremediation of wastewaters with recalcitrant organic compounds and metals by aerobic granules.
    Maszenan AM; Liu Y; Ng WJ
    Biotechnol Adv; 2011; 29(1):111-23. PubMed ID: 20940035
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New process for alleviation of membrane fouling of modified hybrid MBR system for advanced domestic wastewater treatment.
    Shuo L; Baozhen W; Hongjun H; Yanping L
    Water Sci Technol; 2008; 58(10):2059-66. PubMed ID: 19039188
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Size-effect on the physical characteristics of the aerobic granule in a SBR.
    Toh SK; Tay JH; Moy BY; Ivanov V; Tay ST
    Appl Microbiol Biotechnol; 2003 Feb; 60(6):687-95. PubMed ID: 12664147
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microbial composition and structure of aerobic granular sewage biofilms.
    Weber SD; Ludwig W; Schleifer KH; Fried J
    Appl Environ Microbiol; 2007 Oct; 73(19):6233-40. PubMed ID: 17704280
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transport of Escherichia coli and solutes during waste water infiltration in an urban alluvial aquifer.
    Foppen JW; van Herwerden M; Kebtie M; Noman A; Schijven JF; Stuyfzand PJ; Uhlenbrook S
    J Contam Hydrol; 2008 Jan; 95(1-2):1-16. PubMed ID: 17854950
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.