These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 15686436)
1. Cellular uptake and efflux of trans-piceid and its aglycone trans-resveratrol on the apical membrane of human intestinal Caco-2 cells. Henry C; Vitrac X; Decendit A; Ennamany R; Krisa S; Mérillon JM J Agric Food Chem; 2005 Feb; 53(3):798-803. PubMed ID: 15686436 [TBL] [Abstract][Full Text] [Related]
2. Transport, deglycosylation, and metabolism of trans-piceid by small intestinal epithelial cells. Henry-Vitrac C; Desmoulière A; Girard D; Mérillon JM; Krisa S Eur J Nutr; 2006 Oct; 45(7):376-82. PubMed ID: 17009167 [TBL] [Abstract][Full Text] [Related]
3. The beta-D-glucoside and sodium-dependent glucose transporter 1 (SGLT1)-inhibitor phloridzin is transported by both SGLT1 and multidrug resistance-associated proteins 1/2. Walle T; Walle UK Drug Metab Dispos; 2003 Nov; 31(11):1288-91. PubMed ID: 14570756 [TBL] [Abstract][Full Text] [Related]
4. Cellular uptake and efflux of the tea flavonoid (-)epicatechin-3-gallate in the human intestinal cell line Caco-2. Vaidyanathan JB; Walle T J Pharmacol Exp Ther; 2003 Nov; 307(2):745-52. PubMed ID: 12970388 [TBL] [Abstract][Full Text] [Related]
5. Coupling of UDP-glucuronosyltransferases and multidrug resistance-associated proteins is responsible for the intestinal disposition and poor bioavailability of emodin. Liu W; Feng Q; Li Y; Ye L; Hu M; Liu Z Toxicol Appl Pharmacol; 2012 Dec; 265(3):316-24. PubMed ID: 22982073 [TBL] [Abstract][Full Text] [Related]
6. Cellular uptake of dietary flavonoid quercetin 4'-beta-glucoside by sodium-dependent glucose transporter SGLT1. Walgren RA; Lin JT; Kinne RK; Walle T J Pharmacol Exp Ther; 2000 Sep; 294(3):837-43. PubMed ID: 10945831 [TBL] [Abstract][Full Text] [Related]
7. Resveratrol and piceid levels in natural and blended peanut butters. Ibern-Gómez M; Roig-Pérez S; Lamuela-Raventós RM; de la Torre-Boronat MC J Agric Food Chem; 2000 Dec; 48(12):6352-4. PubMed ID: 11312807 [TBL] [Abstract][Full Text] [Related]
8. Differential modulation of ochratoxin A absorption across Caco-2 cells by dietary polyphenols, used at realistic intestinal concentrations. Sergent T; Garsou S; Schaut A; De Saeger S; Pussemier L; Van Peteghem C; Larondelle Y; Schneider YJ Toxicol Lett; 2005 Oct; 159(1):60-70. PubMed ID: 15955639 [TBL] [Abstract][Full Text] [Related]
9. Differential multidrug resistance-associated protein 1 through 6 isoform expression and function in human intestinal epithelial Caco-2 cells. Prime-Chapman HM; Fearn RA; Cooper AE; Moore V; Hirst BH J Pharmacol Exp Ther; 2004 Nov; 311(2):476-84. PubMed ID: 15210835 [TBL] [Abstract][Full Text] [Related]
10. Efflux of dietary flavonoid quercetin 4'-beta-glucoside across human intestinal Caco-2 cell monolayers by apical multidrug resistance-associated protein-2. Walgren RA; Karnaky KJ; Lindenmayer GE; Walle T J Pharmacol Exp Ther; 2000 Sep; 294(3):830-6. PubMed ID: 10945830 [TBL] [Abstract][Full Text] [Related]
11. Transcellular transport of aconitine across human intestinal Caco-2 cells. Yang C; Li Z; Zhang T; Liu F; Ruan J; Zhang Z Food Chem Toxicol; 2013 Jul; 57():195-200. PubMed ID: 23562926 [TBL] [Abstract][Full Text] [Related]
13. Glyceollin Effects on MRP2 and BCRP in Caco-2 Cells, and Implications for Metabolic and Transport Interactions. Chimezie C; Ewing A; Schexnayder C; Bratton M; Glotser E; Skripnikova E; Sá P; Boué S; Stratford RE J Pharm Sci; 2016 Feb; 105(2):972-981. PubMed ID: 26296158 [TBL] [Abstract][Full Text] [Related]
14. Analysis of trans-resveratrol and trans-piceid in vegetable foods using high-performance liquid chromatography. Peng XL; Xu J; Sun XF; Ying CJ; Hao LP Int J Food Sci Nutr; 2015; 66(7):729-35. PubMed ID: 26394028 [TBL] [Abstract][Full Text] [Related]
15. Epithelial transport of deoxynivalenol: involvement of human P-glycoprotein (ABCB1) and multidrug resistance-associated protein 2 (ABCC2). Videmann B; Tep J; Cavret S; Lecoeur S Food Chem Toxicol; 2007 Oct; 45(10):1938-47. PubMed ID: 17543436 [TBL] [Abstract][Full Text] [Related]
16. Disposition mechanisms of raloxifene in the human intestinal Caco-2 model. Jeong EJ; Lin H; Hu M J Pharmacol Exp Ther; 2004 Jul; 310(1):376-85. PubMed ID: 15020665 [TBL] [Abstract][Full Text] [Related]
17. Investigation of piceid metabolites in rat by liquid chromatography tandem mass spectrometry. Wang D; Zhang Z; Ju J; Wang X; Qiu W J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Jan; 879(1):69-74. PubMed ID: 21130054 [TBL] [Abstract][Full Text] [Related]
18. MK571 inhibits phase-2 conjugation of flavonols by Caco-2/TC7 cells, but does not specifically inhibit their apical efflux. Barrington RD; Needs PW; Williamson G; Kroon PA Biochem Pharmacol; 2015 Jun; 95(3):193-200. PubMed ID: 25801004 [TBL] [Abstract][Full Text] [Related]
20. Transport characteristics of isorhamnetin across intestinal Caco-2 cell monolayers and the effects of transporters on it. Duan J; Xie Y; Luo H; Li G; Wu T; Zhang T Food Chem Toxicol; 2014 Apr; 66():313-20. PubMed ID: 24525098 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]