BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 15686913)

  • 1. Detection and control of aspartimide formation in the synthesis of cyclic peptides.
    Flora D; Mo H; Mayer JP; Khan MA; Yan LZ
    Bioorg Med Chem Lett; 2005 Feb; 15(4):1065-8. PubMed ID: 15686913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 1,4-diazepine-2,5-dione ring formation during solid phase synthesis of peptides containing aspartic acid beta-benzyl ester.
    Süli-Vargha H; Schlosser G; Ilas J
    J Pept Sci; 2007 Nov; 13(11):742-8. PubMed ID: 17853501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Problem of aspartimide formation in Fmoc-based solid-phase peptide synthesis using Dmab group to protect side chain of aspartic acid.
    Ruczyński J; Lewandowska B; Mucha P; Rekowski P
    J Pept Sci; 2008 Mar; 14(3):335-41. PubMed ID: 17975850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of Asp-based lactam cyclic peptides using an amide-bonded diaminodiacid to prevent aspartimide formation.
    Li WJ; Chen JY; Zhu HX; Li YM; Xu Y
    Org Biomol Chem; 2024 May; 22(18):3584-3588. PubMed ID: 38623862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of aspartimide formation: the effects of protecting groups, acid, base, temperature and time.
    Tam JP; Riemen MW; Merrifield RB
    Pept Res; 1988; 1(1):6-18. PubMed ID: 2980781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solid-supported synthesis of cryptand-like macrobicyclic peptides.
    Virta P; Lönnberg H
    J Org Chem; 2003 Oct; 68(22):8534-8. PubMed ID: 14575482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An enantioselective synthesis of differentially protected erythro-alpha,beta-diamino acids and its application to the synthesis of an analogue of rhodopeptin B5.
    Durham TB; Miller MJ
    J Org Chem; 2003 Jan; 68(1):35-42. PubMed ID: 12515458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of cyclic peptide libraries using intramolecular oxime formation.
    Roberts KD; Lambert JN; Ede NJ; Bray AM
    J Pept Sci; 2004 Nov; 10(11):659-65. PubMed ID: 15568680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Access to cyclic or branched peptides using bis(2-sulfanylethyl)amido side-chain derivatives of Asp and Glu.
    Boll E; Dheur J; Drobecq H; Melnyk O
    Org Lett; 2012 May; 14(9):2222-5. PubMed ID: 22537053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3-Azido-aspartic acid derivatives - orthogonally protected precursors for the stereoselective incorporation of 2,3-diaminosuccinic acid into peptide structures.
    Riemer C; Bayer T; Schmitt H; Kessler H
    J Pept Res; 2004 Mar; 63(3):196-9. PubMed ID: 15049830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alpha- and beta- aspartyl peptide ester formation via aspartimide ring opening.
    Stathopoulos P; Papas S; Kostidis S; Tsikaris V
    J Pept Sci; 2005 Oct; 11(10):658-64. PubMed ID: 15884102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acid-mediated prevention of aspartimide formation in solid phase peptide synthesis.
    Michels T; Dölling R; Haberkorn U; Mier W
    Org Lett; 2012 Oct; 14(20):5218-21. PubMed ID: 23025410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring the allyl ester deprotection by HR MAS NMR in BAL-solid phase peptide synthesis.
    Duchène T; Mihai C; Willem R; Tourwé D
    J Pept Sci; 2010 Dec; 16(12):679-86. PubMed ID: 20818798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclic tetrapeptides via the ring contraction strategy: chemical techniques useful for their identification.
    Horton DA; Bourne GT; Coughlan J; Kaiser SM; Jacobs CM; Jones A; Rühmann A; Turner JY; Smythe ML
    Org Biomol Chem; 2008 Apr; 6(8):1386-95. PubMed ID: 18385845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the relative and absolute configuration of the dimethylmyristoyl side chain of pneumocandin B0 by asymmetric synthesis.
    Leonard WR; Belyk KM; Bender DR; Conlon DA; Hughes DL; Reider PJ
    Org Lett; 2002 Nov; 4(24):4201-4. PubMed ID: 12443058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A convenient method for synthesis of cyclic peptide libraries.
    Bourne GT; Nielson JL; Coughlan JF; Darwen P; Campitelli MR; Horton DA; Rhümann A; Love SG; Tran TT; Smythe ML
    Methods Mol Biol; 2005; 298():151-65. PubMed ID: 16044546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation on side-product formation during the synthesis of a lactoferrin-derived lactam-bridged cyclic peptide.
    Scala MC; Spensiero A; Pepe G; Bertamino A; Carotenuto A; Grieco P; Novellino E; Gomez-Monterrey IM; Campiglia P; Sala M
    Amino Acids; 2018 Oct; 50(10):1367-1375. PubMed ID: 29974257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Limiting racemization and aspartimide formation in microwave-enhanced Fmoc solid phase peptide synthesis.
    Palasek SA; Cox ZJ; Collins JM
    J Pept Sci; 2007 Mar; 13(3):143-8. PubMed ID: 17121420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stereoselective synthesis of the gamma-lactam hydrolysate of the thiopeptide cyclothiazomycin.
    Bagley MC; Xiong X
    Org Lett; 2004 Sep; 6(19):3401-4. PubMed ID: 15355062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solid-phase synthesis of chlorofusin analogues.
    Woon EC; Arcieri M; Wilderspin AF; Malkinson JP; Searcey M
    J Org Chem; 2007 Jul; 72(14):5146-51. PubMed ID: 17559272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.