These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 15687189)
1. GlnD is essential for NifA activation, NtrB/NtrC-regulated gene expression, and posttranslational regulation of nitrogenase activity in the photosynthetic, nitrogen-fixing bacterium Rhodospirillum rubrum. Zhang Y; Pohlmann EL; Roberts GP J Bacteriol; 2005 Feb; 187(4):1254-65. PubMed ID: 15687189 [TBL] [Abstract][Full Text] [Related]
2. Mutagenesis and functional characterization of the glnB, glnA, and nifA genes from the photosynthetic bacterium Rhodospirillum rubrum. Zhang Y; Pohlmann EL; Ludden PW; Roberts GP J Bacteriol; 2000 Feb; 182(4):983-92. PubMed ID: 10648524 [TBL] [Abstract][Full Text] [Related]
3. Lethality of glnD null mutations in Azotobacter vinelandii is suppressible by prevention of glutamine synthetase adenylylation. Colnaghi R; Rudnick P; He L; Green A; Yan D; Larson E; Kennedy C Microbiology (Reading); 2001 May; 147(Pt 5):1267-1276. PubMed ID: 11320130 [TBL] [Abstract][Full Text] [Related]
4. Identification and functional characterization of NifA variants that are independent of GlnB activation in the photosynthetic bacterium Rhodospirillum rubrum. Zou X; Zhu Y; Pohlmann EL; Li J; Zhang Y; Roberts GP Microbiology (Reading); 2008 Sep; 154(Pt 9):2689-2699. PubMed ID: 18757802 [TBL] [Abstract][Full Text] [Related]
5. Effect of an ntrBC mutation on the posttranslational regulation of nitrogenase activity in Rhodospirillum rubrum. Zhang Y; Cummings AD; Burris RH; Ludden PW; Roberts GP J Bacteriol; 1995 Sep; 177(18):5322-6. PubMed ID: 7665521 [TBL] [Abstract][Full Text] [Related]
6. Mutagenesis and functional characterization of the four domains of GlnD, a bifunctional nitrogen sensor protein. Zhang Y; Pohlmann EL; Serate J; Conrad MC; Roberts GP J Bacteriol; 2010 Jun; 192(11):2711-21. PubMed ID: 20363937 [TBL] [Abstract][Full Text] [Related]
7. The Rhizobium leguminosarum bv. viciae glnD gene, encoding a uridylyltransferase/uridylyl-removing enzyme, is expressed in the root nodule but is not essential for nitrogen fixation. Schlüter A; Nöhlen M; Krämer M; Defez R; Priefer UB Microbiology (Reading); 2000 Nov; 146 ( Pt 11)():2987-2996. PubMed ID: 11065377 [TBL] [Abstract][Full Text] [Related]
8. Interaction of the signal transduction protein GlnJ with the cellular targets AmtB1, GlnE and GlnD in Rhodospirillum rubrum: dependence on manganese, 2-oxoglutarate and the ADP/ATP ratio. Teixeira PF; Jonsson A; Frank M; Wang H; Nordlund S Microbiology (Reading); 2008 Aug; 154(Pt 8):2336-2347. PubMed ID: 18667566 [TBL] [Abstract][Full Text] [Related]
9. Identification of Rhodospirillum rubrum GlnB variants that are altered in their ability to interact with different targets in response to nitrogen status signals. Zhu Y; Conrad MC; Zhang Y; Roberts GP J Bacteriol; 2006 Mar; 188(5):1866-74. PubMed ID: 16484197 [TBL] [Abstract][Full Text] [Related]
10. Cloning and characterisation of the Azospirillum brasilense glnD gene and analysis of a glnD mutant. Van Dommelen A; Keijers V; Somers E; Vanderleyden J Mol Genet Genomics; 2002 Jan; 266(5):813-20. PubMed ID: 11810255 [TBL] [Abstract][Full Text] [Related]
11. Isolation and characterization of the glnD gene of Gluconacetobacter diazotrophicus, encoding a putative uridylyltransferase/uridylyl-removing enzyme. Perlova O; Nawroth R; Zellermann EM; Meletzus D Gene; 2002 Sep; 297(1-2):159-68. PubMed ID: 12384297 [TBL] [Abstract][Full Text] [Related]
12. Diazotrophic growth of Rhodospirillum rubrum with 2-oxoglutarate as sole carbon source affects regulation of nitrogen metabolism as well as the soluble proteome. Teixeira PF; Selao TT; Henriksson V; Wang H; Norén A; Nordlund S Res Microbiol; 2010 Oct; 161(8):651-9. PubMed ID: 20600859 [TBL] [Abstract][Full Text] [Related]
13. Effect of pyruvate on the metabolic regulation of nitrogenase activity in Rhodospirillum rubrum in darkness. Selao TT; Edgren T; Wang H; Norén A; Nordlund S Microbiology (Reading); 2011 Jun; 157(Pt 6):1834-1840. PubMed ID: 21393366 [TBL] [Abstract][Full Text] [Related]
14. The poor growth of Rhodospirillum rubrum mutants lacking PII proteins is due to an excess of glutamine synthetase activity. Zhang Y; Pohlmann EL; Conrad MC; Roberts GP Mol Microbiol; 2006 Jul; 61(2):497-510. PubMed ID: 16762025 [TBL] [Abstract][Full Text] [Related]
15. Role of the GlnK signal transduction protein in the regulation of nitrogen assimilation in Escherichia coli. Atkinson MR; Ninfa AJ Mol Microbiol; 1998 Jul; 29(2):431-47. PubMed ID: 9720863 [TBL] [Abstract][Full Text] [Related]
16. Manganese, an essential trace element for N2 fixation by Rhodospirillum rubrum and Rhodopseudomonas capsulata: role in nitrogenase regulation. Yoch DC J Bacteriol; 1979 Dec; 140(3):987-95. PubMed ID: 42641 [TBL] [Abstract][Full Text] [Related]
17. Nitrogen metabolism in Sinorhizobium meliloti-alfalfa symbiosis: dissecting the role of GlnD and PII proteins. Yurgel SN; Rice J; Kahn ML Mol Plant Microbe Interact; 2012 Mar; 25(3):355-62. PubMed ID: 22074345 [TBL] [Abstract][Full Text] [Related]
18. Reduced activity of glutamine synthetase in Rhodospirillum rubrum mutants lacking the adenylyltransferase GlnE. Jonsson A; Nordlund S; Teixeira PF Res Microbiol; 2009 Oct; 160(8):581-4. PubMed ID: 19761831 [TBL] [Abstract][Full Text] [Related]
19. Complementation of a pleiotropic Nif-Gln regulatory mutant of Rhodospirillum rubrum by a previously unrecognized Azotobacter vinelandii regulatory locus. Hu CZ; Yoch DC Arch Microbiol; 1990; 154(6):528-35. PubMed ID: 1980582 [TBL] [Abstract][Full Text] [Related]
20. Role of GlnK in NifL-mediated regulation of NifA activity in Azotobacter vinelandii. Rudnick P; Kunz C; Gunatilaka MK; Hines ER; Kennedy C J Bacteriol; 2002 Feb; 184(3):812-20. PubMed ID: 11790752 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]