BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 15687264)

  • 41. Renaturation of DNA catalysed by yeast DNA repair and recombination protein RAD10.
    Sung P; Prakash L; Prakash S
    Nature; 1992 Feb; 355(6362):743-5. PubMed ID: 1741062
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants.
    Chen C; Kolodner RD
    Nat Genet; 1999 Sep; 23(1):81-5. PubMed ID: 10471504
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nucleotide excision repair in yeast is mediated by sequential assembly of repair factors and not by a pre-assembled repairosome.
    Guzder SN; Sung P; Prakash L; Prakash S
    J Biol Chem; 1996 Apr; 271(15):8903-10. PubMed ID: 8621533
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The HMG-domain protein Ixr1 blocks excision repair of cisplatin-DNA adducts in yeast.
    McA'Nulty MM; Lippard SJ
    Mutat Res; 1996 Jan; 362(1):75-86. PubMed ID: 8538651
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Analysis of spontaneous and double-strand break-induced recombination in rad mutants of S. pombe.
    Fortunato EA; Osman F; Subramani S
    Mutat Res; 1996 Dec; 364(3):14-60. PubMed ID: 8960127
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Saccharomyces cerevisiae Sae2- and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining.
    Lee K; Lee SE
    Genetics; 2007 Aug; 176(4):2003-14. PubMed ID: 17565964
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Regulation of gross chromosomal rearrangements by ubiquitin and SUMO ligases in Saccharomyces cerevisiae.
    Motegi A; Kuntz K; Majeed A; Smith S; Myung K
    Mol Cell Biol; 2006 Feb; 26(4):1424-33. PubMed ID: 16449653
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Aberrant double-strand break repair in rad51 mutants of Saccharomyces cerevisiae.
    Kang LE; Symington LS
    Mol Cell Biol; 2000 Dec; 20(24):9162-72. PubMed ID: 11094068
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sumoylation of the Rad1 nuclease promotes DNA repair and regulates its DNA association.
    Sarangi P; Bartosova Z; Altmannova V; Holland C; Chavdarova M; Lee SE; Krejci L; Zhao X
    Nucleic Acids Res; 2014 Jun; 42(10):6393-404. PubMed ID: 24753409
    [TBL] [Abstract][Full Text] [Related]  

  • 50. DNA repair pathway selection caused by defects in TEL1, SAE2, and de novo telomere addition generates specific chromosomal rearrangement signatures.
    Putnam CD; Pallis K; Hayes TK; Kolodner RD
    PLoS Genet; 2014 Apr; 10(4):e1004277. PubMed ID: 24699249
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Multiple pathways promote short-sequence recombination in Saccharomyces cerevisiae.
    Manthey GM; Bailis AM
    Mol Cell Biol; 2002 Aug; 22(15):5347-56. PubMed ID: 12101230
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chromosomal rearrangements occur in S. cerevisiae rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair.
    Chen C; Umezu K; Kolodner RD
    Mol Cell; 1998 Jul; 2(1):9-22. PubMed ID: 9702187
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break-induced recombination.
    Sugawara N; Pâques F; Colaiácovo M; Haber JE
    Proc Natl Acad Sci U S A; 1997 Aug; 94(17):9214-9. PubMed ID: 9256462
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rad10-YFP focus induction in response to UV depends on RAD14 in yeast.
    Mardiros A; Benoun JM; Haughton R; Baxter K; Kelson EP; Fischhaber PL
    Acta Histochem; 2011 Jul; 113(4):409-15. PubMed ID: 20546858
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synergism between base excision repair, mediated by the DNA glycosylases Ntg1 and Ntg2, and nucleotide excision repair in the removal of oxidatively damaged DNA bases in Saccharomyces cerevisiae.
    Gellon L; Barbey R; Auffret van der Kemp P; Thomas D; Boiteux S
    Mol Genet Genomics; 2001 Aug; 265(6):1087-96. PubMed ID: 11523781
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Measuring the rate of gross chromosomal rearrangements in Saccharomyces cerevisiae: A practical approach to study genomic rearrangements observed in cancer.
    Motegi A; Myung K
    Methods; 2007 Feb; 41(2):168-76. PubMed ID: 17189859
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of the RAD10 gene of Saccharomyces cerevisiae and purification of Rad10 protein.
    Bardwell L; Burtscher H; Weiss WA; Nicolet CM; Friedberg EC
    Biochemistry; 1990 Mar; 29(12):3119-26. PubMed ID: 2110825
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rapid analysis of Saccharomyces cerevisiae genome rearrangements by multiplex ligation-dependent probe amplification.
    Chan JE; Kolodner RD
    PLoS Genet; 2012; 8(3):e1002539. PubMed ID: 22396658
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multiple endonucleases function to repair covalent topoisomerase I complexes in Saccharomyces cerevisiae.
    Deng C; Brown JA; You D; Brown JM
    Genetics; 2005 Jun; 170(2):591-600. PubMed ID: 15834151
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mph1p promotes gross chromosomal rearrangement through partial inhibition of homologous recombination.
    Banerjee S; Smith S; Oum JH; Liaw HJ; Hwang JY; Sikdar N; Motegi A; Lee SE; Myung K
    J Cell Biol; 2008 Jun; 181(7):1083-93. PubMed ID: 18591428
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.