These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. To what extent does a minimal atherosclerotic plaque alter the arterial wall shear stress distribution? A model study by an electrochemical method. Yamaguchi T; Hanai S Biorheology; 1988; 25(1-2):31-6. PubMed ID: 3196828 [TBL] [Abstract][Full Text] [Related]
6. Flow of an elastico-viscous liquid in a curved pipe of slowly varying curvature. Sarin VB Int J Biomed Comput; 1993 Mar; 32(2):135-49. PubMed ID: 8449591 [TBL] [Abstract][Full Text] [Related]
7. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids. Frolov SV; Sindeev SV; Liepsch D; Balasso A Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725 [TBL] [Abstract][Full Text] [Related]
8. Experimental flow studies in an elastic Y-model. Mijovic B; Liepsch D Technol Health Care; 2003; 11(2):115-41. PubMed ID: 12697953 [TBL] [Abstract][Full Text] [Related]
9. A fluid--structure interaction finite element analysis of pulsatile blood flow through a compliant stenotic artery. Bathe M; Kamm RD J Biomech Eng; 1999 Aug; 121(4):361-9. PubMed ID: 10464689 [TBL] [Abstract][Full Text] [Related]
10. A nonlinear axisymmetric model with fluid-wall interactions for steady viscous flow in stenotic elastic tubes. Tang D; Yang J; Yang C; Ku DN J Biomech Eng; 1999 Oct; 121(5):494-501. PubMed ID: 10529916 [TBL] [Abstract][Full Text] [Related]
11. A boundary layer model for wall shear stress in arterial stenosis. Provenzano PP; Rutland CJ Biorheology; 2002; 39(6):743-54. PubMed ID: 12454440 [TBL] [Abstract][Full Text] [Related]
12. Numerical investigation of the hydrodynamic parameters of blood flow through stenotic descending aorta. Pasha Zanous S; Shafaghat R; Esmaili Q Proc Inst Mech Eng H; 2015 Jul; 229(7):524-34. PubMed ID: 26008888 [TBL] [Abstract][Full Text] [Related]
13. Two-layered model of Casson fluid flow through stenotic blood vessels: applications to the cardiovascular system. Srivastava VP; Saxena M J Biomech; 1994 Jul; 27(7):921-8. PubMed ID: 8063842 [TBL] [Abstract][Full Text] [Related]
14. Post-stenotic core flow behavior in pulsatile flow and its effects on wall shear stress. Lieber BB; Giddens DP J Biomech; 1990; 23(6):597-605. PubMed ID: 2341421 [TBL] [Abstract][Full Text] [Related]
15. Pulsatile flow in tubes of elliptic cross sections. Haslam M; Zamir M Ann Biomed Eng; 1998; 26(5):780-7. PubMed ID: 9779950 [TBL] [Abstract][Full Text] [Related]
16. Effects of curvature and stenosis-like narrowing on wall shear stress in a coronary artery model with phasic flow. Nosovitsky VA; Ilegbusi OJ; Jiang J; Stone PH; Feldman CL Comput Biomed Res; 1997 Feb; 30(1):61-82. PubMed ID: 9134307 [TBL] [Abstract][Full Text] [Related]
17. Pressure field in flow through uniform straight pipes with varying wall cross curvature. Naili S; Thiriet M Comput Biol Med; 2005 Oct; 35(8):645-63. PubMed ID: 16124988 [TBL] [Abstract][Full Text] [Related]
18. Accurate noninvasive quantitation of blood flow, cross-sectional lumen vessel area and wall shear stress by three-dimensional paraboloid modeling of magnetic resonance imaging velocity data. Oyre S; Ringgaard S; Kozerke S; Paaske WP; Erlandsen M; Boesiger P; Pedersen EM J Am Coll Cardiol; 1998 Jul; 32(1):128-34. PubMed ID: 9669260 [TBL] [Abstract][Full Text] [Related]
19. Fluid flow and plaque formation in an aortic bifurcation. Nazemi M; Kleinstreuer C; Archie JP; Sorrell FY J Biomech Eng; 1989 Nov; 111(4):316-24. PubMed ID: 2486371 [TBL] [Abstract][Full Text] [Related]
20. Hemodynamics of an artery with mild stenosis. Cavalcanti S J Biomech; 1995 Apr; 28(4):387-99. PubMed ID: 7738048 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]