These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 15688128)

  • 1. Lead distribution in Permo-Carboniferous coal from the North China Plate, China.
    Kunli L; Jidong L; Lianwu C
    Environ Geochem Health; 2005 Feb; 27(1):31-7. PubMed ID: 15688128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Lead emission amount from coal combustion and its environment effect in Xi'an City].
    Luo K; Wang D; Tan J; Wang L; Feng F; Li R
    Huan Jing Ke Xue; 2002 Jan; 23(1):123-5. PubMed ID: 11987396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The distribution, occurrence and environmental effect of mercury in Chinese coals.
    Zheng L; Liu G; Chou CL
    Sci Total Environ; 2007 Oct; 384(1-3):374-83. PubMed ID: 17599392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental geochemistry of antimony in Chinese coals.
    Qi C; Liu G; Chou CL; Zheng L
    Sci Total Environ; 2008 Jan; 389(2-3):225-34. PubMed ID: 17936877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potentially useful elements (Al, Fe, Ga, Ge, U) in coal gangue: a case study in Weibei coal mining area, Shaanxi Province, northwestern China.
    Wang S; Wang X
    Environ Sci Pollut Res Int; 2018 Apr; 25(12):11893-11904. PubMed ID: 29446026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pollution extents of organic substances from a coal gangue dump of Jiulong Coal Mine, China.
    Sun YZ; Fan JS; Qin P; Niu HY
    Environ Geochem Health; 2009 Feb; 31(1):81-9. PubMed ID: 18288575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excess sulfur and Fe elements drive changes in soil and vegetation at abandoned coal gangues, Guizhou China.
    Ma J; Quan Z; Sun Y; Du J; Liu B
    Sci Rep; 2020 Jun; 10(1):10456. PubMed ID: 32591606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tracing sources of coal combustion using stable sulfur isotope ratios in epilithic mosses and coals from China.
    Xiao HY; Tang CG; Zhu RG; Wang YL; Xiao HW; Liu CQ
    J Environ Monit; 2011 Aug; 13(8):2243-9. PubMed ID: 21677936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping and prediction of coal workers' pneumoconiosis with bioavailable iron content in the bituminous coals.
    Huang X; Li W; Attfield MD; NĂ¡das A; Frenkel K; Finkelman RB
    Environ Health Perspect; 2005 Aug; 113(8):964-8. PubMed ID: 16079064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mobility behavior and environmental implications of trace elements associated with coal gangue: a case study at the Huainan Coalfield in China.
    Chuncai Z; Guijian L; Dun W; Ting F; Ruwei W; Xiang F
    Chemosphere; 2014 Jan; 95():193-9. PubMed ID: 24050719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic concentrations in Chinese coals.
    Wang M; Zheng B; Wang B; Li S; Wu D; Hu J
    Sci Total Environ; 2006 Mar; 357(1-3):96-102. PubMed ID: 16256172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mercury stable isotopic compositions in coals from major coal producing fields in China and their geochemical and environmental implications.
    Yin R; Feng X; Chen J
    Environ Sci Technol; 2014 May; 48(10):5565-74. PubMed ID: 24742360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimate of sulfur, arsenic, mercury, fluorine emissions due to spontaneous combustion of coal gangue: An important part of Chinese emission inventories.
    Wang S; Luo K; Wang X; Sun Y
    Environ Pollut; 2016 Feb; 209():107-13. PubMed ID: 26650082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enrichment and response of iron-metabolizing microorganisms and metabolic genes in the contaminated area of stratified stacking coal gangue dumps, Northern China.
    Chen D; Feng Q; Zhang Y
    Environ Sci Pollut Res Int; 2023 May; 30(23):63603-63619. PubMed ID: 37046168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial distribution of organic and pyritic sulfur in surface sediments of eutrophic Jiaozhou Bay, China: clues to anthropogenic impacts.
    Chen KK; Zhu MX; Yang GP; Fan DJ; Huang XL
    Mar Pollut Bull; 2014 Nov; 88(1-2):284-91. PubMed ID: 25220315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inflammatory stress response in A549 cells as a result of exposure to coal: evidence for the role of pyrite in coal workers' pneumoconiosis pathogenesis.
    Harrington AD; Tsirka SE; Schoonen MA
    Chemosphere; 2013 Oct; 93(6):1216-21. PubMed ID: 23895739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenic in Chinese coals: distribution, modes of occurrence, and environmental effects.
    Kang Y; Liu G; Chou CL; Wong MH; Zheng L; Ding R
    Sci Total Environ; 2011 Dec; 412-413():1-13. PubMed ID: 22078371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lead in Chinese coals: distribution, modes of occurrence, and environmental effects.
    Fang T; Liu G; Zhou C; Sun R; Chen J; Wu D
    Environ Geochem Health; 2014 Jun; 36(3):563-81. PubMed ID: 24218089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mercury release during thermal treatment of two Chinese coal gangues.
    Guo S; Niu X; Zhai J
    Environ Sci Pollut Res Int; 2017 Oct; 24(30):23578-23583. PubMed ID: 28856563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Technological and economic aspects of coal biodesulfurisation.
    Klein J
    Biodegradation; 1998; 9(3-4):293-300. PubMed ID: 10022072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.