These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 15688128)

  • 21. Regional characteristics of sulfur and lead isotope ratios in the atmosphere at several Chinese urban sites.
    Mukai H; Tanaka A; Fujii T; Zeng Y; Hong Y; Tang J; Guo S; Xue H; Sun Z; Zhou J; Xue D; Zhao J; Zhai G; Gu J; Zhai P
    Environ Sci Technol; 2001 Mar; 35(6):1064-71. PubMed ID: 11347915
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Content and distribution of fluorine in Chinese coals].
    Wu DS; Zheng BS; Tang XY; Wang Y; Liu XJ; Hu J; Finkelman RB
    Huan Jing Ke Xue; 2005 Jan; 26(1):7-11. PubMed ID: 15859399
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Geochemistry of vanadium (V) in Chinese coals.
    Liu Y; Liu G; Qu Q; Qi C; Sun R; Liu H
    Environ Geochem Health; 2017 Oct; 39(5):967-986. PubMed ID: 27730408
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Speciation of nickel in Canadian subbituminous and bituminous feed coals, and their ash by-products.
    Goodarzi F; Huggins F
    J Environ Monit; 2004 Oct; 6(10):787-91. PubMed ID: 15480491
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Contents and occurrence of cadmium in the coals from Guizhou province, China.
    Song D; Wang M; Zhang J; Zheng C
    Ann N Y Acad Sci; 2008 Oct; 1140():274-81. PubMed ID: 18991925
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioleaching of pyritic coal wastes: bioprospecting and efficiency of selected consortia.
    Joulian C; Fonti V; Chapron S; Bryan CG; Guezennec AG
    Res Microbiol; 2020; 171(7):260-270. PubMed ID: 32890633
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Geochemical characteristics of n-alkanes and isoprenoids in coal seams from Zhuji coal mine, Huainan coalfield, China, and their relationship with coal-forming environment.
    Wang S; Liu G; Liu J
    Environ Sci Pollut Res Int; 2018 Apr; 25(10):9896-9903. PubMed ID: 29374375
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Uranium in Chinese coals: Concentration, spatial distribution, and modes of occurrence.
    Ren W; Cao Q; Yang L; Huang S
    J Environ Radioact; 2022 May; 246():106848. PubMed ID: 35219123
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis of low-temperature, fast, single-firing body for porcelain stoneware tiles with coal gangue.
    Qiangwei Wei ; Wenyuan Gao ; Xinguo Sui
    Waste Manag Res; 2010 Oct; 28(10):944-50. PubMed ID: 19942651
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The characterization of organic nitrogen and sulfur functional groups in coals after biomethane production.
    Liu X; Zhao F; Guo H; Xia D; Dong Z; Li Z
    Environ Sci Pollut Res Int; 2022 May; 29(22):33495-33505. PubMed ID: 35028845
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The microbial desulfurization of coal.
    Rossi G
    Adv Biochem Eng Biotechnol; 2014; 142():147-67. PubMed ID: 23576051
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mineralogy and Geochemistry of the M9 High-Sulfur Coal from the Renjiazhuang Mining District, China.
    Wu M; Shen J; Qin Y; Yang L; Song X; Zhu S; Li J
    ACS Omega; 2022 Aug; 7(34):29794-29803. PubMed ID: 36061677
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation on the activation of coal gangue by a new compound method.
    Li C; Wan J; Sun H; Li L
    J Hazard Mater; 2010 Jul; 179(1-3):515-20. PubMed ID: 20359819
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [A Classification Method Based on the Combination of Visible, Near-Infrared and Thermal Infrared Spectrum for Coal and Gangue Distinguishment].
    Song L; Liu SJ; Yu ML; Mao YC; Wu LX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Feb; 37(2):416-22. PubMed ID: 30265465
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of microbial nutrients supply on coal bio-desulfurization.
    Liu F; Lei Y; Shi J; Zhou L; Wu Z; Dong Y; Bi W
    J Hazard Mater; 2020 Feb; 384():121324. PubMed ID: 31586921
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Geochemistry of tin (Sn) in Chinese coals.
    Qu Q; Liu G; Sun R; Kang Y
    Environ Geochem Health; 2016 Feb; 38(1):1-23. PubMed ID: 25686909
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative assessment of variability and uncertainty of hazardous trace element (Cd, Cr, and Pb) contents in Chinese coals by using bootstrap simulation.
    Tian H; Cheng K; Wang Y; Zhao D; Chai F; Xue Z; Hao J
    J Air Waste Manag Assoc; 2011 Jul; 61(7):755-63. PubMed ID: 21850830
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In Situ Capturing and Absorption of Sulfur Gases Formed during Thermal Treatment of South African Coals.
    Matjie RH; Lesufi JM; Bunt JR; Strydom CA; Schobert HH; Uwaoma R
    ACS Omega; 2018 Oct; 3(10):14201-14212. PubMed ID: 31458111
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biological removal of pyritic sulfur from coal by the thermophilic organism Sulfolobus acidocaldarius.
    Kargi F; Robinson JM
    Biotechnol Bioeng; 1985 Jan; 27(1):41-9. PubMed ID: 18553575
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Feasibility study on the application of coal gangue as landfill liner material.
    Wu H; Wen Q; Hu L; Gong M; Tang Z
    Waste Manag; 2017 May; 63():161-171. PubMed ID: 28119038
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.