These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 15688202)
41. Multispike interactions in a stochastic model of spike-timing-dependent plasticity. Appleby PA; Elliott T Neural Comput; 2007 May; 19(5):1362-99. PubMed ID: 17381270 [TBL] [Abstract][Full Text] [Related]
42. Correlated inhibitory and excitatory inputs to the coincidence detector: analytical solution. Mikula S; Niebur E IEEE Trans Neural Netw; 2004 Sep; 15(5):957-62. PubMed ID: 15484872 [TBL] [Abstract][Full Text] [Related]
43. Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential. Shu Y; Hasenstaub A; Duque A; Yu Y; McCormick DA Nature; 2006 Jun; 441(7094):761-5. PubMed ID: 16625207 [TBL] [Abstract][Full Text] [Related]
44. Synchronization of the neural response to noisy periodic synaptic input. Burkitt AN; Clark GM Neural Comput; 2001 Dec; 13(12):2639-72. PubMed ID: 11705405 [TBL] [Abstract][Full Text] [Related]
45. Analysis of spike statistics in neuronal systems with continuous attractors or multiple, discrete attractor States. Miller P Neural Comput; 2006 Jun; 18(6):1268-317. PubMed ID: 16764505 [TBL] [Abstract][Full Text] [Related]
46. Optimality model of unsupervised spike-timing-dependent plasticity: synaptic memory and weight distribution. Toyoizumi T; Pfister JP; Aihara K; Gerstner W Neural Comput; 2007 Mar; 19(3):639-71. PubMed ID: 17298228 [TBL] [Abstract][Full Text] [Related]
47. Periodically-modulated inhibition of living pacemaker neurons--III. The heterogeneity of the postsynaptic spike trains, and how control parameters affect it. Segundo JP; Vibert JF; Stiber M Neuroscience; 1998 Nov; 87(1):15-47. PubMed ID: 9722139 [TBL] [Abstract][Full Text] [Related]
48. Higher-order statistics of input ensembles and the response of simple model neurons. Kuhn A; Aertsen A; Rotter S Neural Comput; 2003 Jan; 15(1):67-101. PubMed ID: 12590820 [TBL] [Abstract][Full Text] [Related]
49. Developmental changes in presynaptic muscarinic modulation of excitatory and inhibitory neurotransmission in rat piriform cortex in vitro: relevance to epileptiform bursting susceptibility. Whalley BJ; Constanti A Neuroscience; 2006 Jul; 140(3):939-56. PubMed ID: 16616427 [TBL] [Abstract][Full Text] [Related]
50. Neural populations can induce reliable postsynaptic currents without observable spike rate changes or precise spike timing. Tripp B; Eliasmith C Cereb Cortex; 2007 Aug; 17(8):1830-40. PubMed ID: 17043082 [TBL] [Abstract][Full Text] [Related]
51. Granular cells of the mormyrid electrosensory lobe and postsynaptic control over presynaptic spike occurrence and amplitude through an electrical synapse. Zhang J; Han VZ; Meek J; Bell CC J Neurophysiol; 2007 Mar; 97(3):2191-203. PubMed ID: 17229820 [TBL] [Abstract][Full Text] [Related]
52. Selective detection of abrupt input changes by integration of spike-frequency adaptation and synaptic depression in a computational network model. Puccini GD; Sanchez-Vives MV; Compte A J Physiol Paris; 2006; 100(1-3):1-15. PubMed ID: 17095200 [TBL] [Abstract][Full Text] [Related]
53. Spike timing precision and neural error correction: local behavior. Stiber M Neural Comput; 2005 Jul; 17(7):1577-601. PubMed ID: 15901408 [TBL] [Abstract][Full Text] [Related]
54. Dynamics of glutamatergic synapses in the medial vestibular nucleus of the mouse. Broussard DM Eur J Neurosci; 2009 Feb; 29(3):502-17. PubMed ID: 19175402 [TBL] [Abstract][Full Text] [Related]
55. Mechanisms that modulate the transfer of spiking correlations. Rosenbaum R; Josić K Neural Comput; 2011 May; 23(5):1261-305. PubMed ID: 21299426 [TBL] [Abstract][Full Text] [Related]
56. Depressed responses of facilitatory synapses. Banitt Y; Martin KA; Segev I J Neurophysiol; 2005 Jul; 94(1):865-70. PubMed ID: 15728769 [TBL] [Abstract][Full Text] [Related]
57. A history of spike trains as Point Processes in neural coding. Segundo JP J Physiol Paris; 2010; 104(3-4):156-9. PubMed ID: 20004719 [TBL] [Abstract][Full Text] [Related]
58. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity--symmetry breaking. Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL Biol Cybern; 2009 Aug; 101(2):103-14. PubMed ID: 19536559 [TBL] [Abstract][Full Text] [Related]
59. Precise timing in fly motion vision is mediated by fast components of combined graded and spike signals. Beckers U; Egelhaaf M; Kurtz R Neuroscience; 2009 May; 160(3):639-50. PubMed ID: 19264111 [TBL] [Abstract][Full Text] [Related]
60. A method for determining neural connectivity and inferring the underlying network dynamics using extracellular spike recordings. Makarov VA; Panetsos F; de Feo O J Neurosci Methods; 2005 Jun; 144(2):265-79. PubMed ID: 15910987 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]