These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 15688445)
1. The human prion protein alpha2 helix: a thermodynamic study of its conformational preferences. Tizzano B; Palladino P; De Capua A; Marasco D; Rossi F; Benedetti E; Pedone C; Ragone R; Ruvo M Proteins; 2005 Apr; 59(1):72-9. PubMed ID: 15688445 [TBL] [Abstract][Full Text] [Related]
2. A thermodynamic approach to the conformational preferences of the 180-195 segment derived from the human prion protein alpha2-helix. Ronga L; Palladino P; Ragone R; Benedetti E; Rossi F J Pept Sci; 2009 Jan; 15(1):30-5. PubMed ID: 19035579 [TBL] [Abstract][Full Text] [Related]
3. Structural characterization of a neurotoxic threonine-rich peptide corresponding to the human prion protein alpha 2-helical 180-195 segment, and comparison with full-length alpha 2-helix-derived peptides. Ronga L; Palladino P; Saviano G; Tancredi T; Benedetti E; Ragone R; Rossi F J Pept Sci; 2008 Oct; 14(10):1096-102. PubMed ID: 18563793 [TBL] [Abstract][Full Text] [Related]
4. Conformational properties of peptide fragments homologous to the 106-114 and 106-126 residues of the human prion protein: a CD and NMR spectroscopic study. Di Natale G; Impellizzeri G; Pappalardo G Org Biomol Chem; 2005 Feb; 3(3):490-7. PubMed ID: 15678187 [TBL] [Abstract][Full Text] [Related]
6. Effects of detergents on the secondary structures of prion protein peptides as studied by CD spectroscopy. Kuroda Y; Maeda Y; Sawa S; Shibata K; Miyamoto K; Nakagawa T J Pept Sci; 2003 Apr; 9(4):212-20. PubMed ID: 12725242 [TBL] [Abstract][Full Text] [Related]
7. Does tetracycline bind helix 2 of prion? An integrated spectroscopical and computational study of the interaction between the antibiotic and alpha helix 2 human prion protein fragments. Ronga L; Langella E; Palladino P; Marasco D; Tizzano B; Saviano M; Pedone C; Improta R; Ruvo M Proteins; 2007 Feb; 66(3):707-15. PubMed ID: 17152078 [TBL] [Abstract][Full Text] [Related]
8. Simulation study on the disordered state of an Alzheimer's beta amyloid peptide Abeta(12 36) in water consisting of random-structural, beta-structural, and helical clusters. Ikebe J; Kamiya N; Ito J; Shindo H; Higo J Protein Sci; 2007 Aug; 16(8):1596-608. PubMed ID: 17656579 [TBL] [Abstract][Full Text] [Related]
9. The key-role of tyrosine 155 in the mechanism of prion transconformation as highlighted by a study of sheep mutant peptides. Bertho G; Bouvier G; Hoa GH; Girault JP Peptides; 2008 Jul; 29(7):1073-84. PubMed ID: 18455265 [TBL] [Abstract][Full Text] [Related]
10. A role for His155 in binding of human prion peptide144-167 to immobilised prion protein. Hesp JR; Raven ND; Sutton JM Biochem Biophys Res Commun; 2007 Oct; 362(3):695-9. PubMed ID: 17761148 [TBL] [Abstract][Full Text] [Related]
11. Conformational polymorphism of the PrP106-126 peptide in different environments: a molecular dynamics study. Villa A; Mark AE; Saracino GA; Cosentino U; Pitea D; Moro G; Salmona M J Phys Chem B; 2006 Jan; 110(3):1423-8. PubMed ID: 16471693 [TBL] [Abstract][Full Text] [Related]
13. Spontaneous beta-helical fold in prion protein: the case of PrP(82-146). Saracino GA; Villa A; Moro G; Cosentino U; Salmona M Proteins; 2009 Jun; 75(4):964-76. PubMed ID: 19089953 [TBL] [Abstract][Full Text] [Related]
14. Clustered negative charges on the lipid membrane surface induce beta-sheet formation of prion protein fragment 106-126. Miura T; Yoda M; Takaku N; Hirose T; Takeuchi H Biochemistry; 2007 Oct; 46(41):11589-97. PubMed ID: 17887730 [TBL] [Abstract][Full Text] [Related]
15. Expansion of the octarepeat domain alters the misfolding pathway but not the folding pathway of the prion protein. Leliveld SR; Stitz L; Korth C Biochemistry; 2008 Jun; 47(23):6267-78. PubMed ID: 18473442 [TBL] [Abstract][Full Text] [Related]
16. Tuning the conformational properties of the prion peptide. Ho CC; Lee LY; Huang KT; Lin CC; Ku MY; Yang CC; Chan SI; Hsu RL; Chen RP Proteins; 2009 Jul; 76(1):213-25. PubMed ID: 19137620 [TBL] [Abstract][Full Text] [Related]
17. Environmental factors differently affect human and rat IAPP: conformational preferences and membrane interactions of IAPP17-29 peptide derivatives. Pappalardo G; Milardi D; Magrì A; Attanasio F; Impellizzeri G; La Rosa C; Grasso D; Rizzarelli E Chemistry; 2007; 13(36):10204-15. PubMed ID: 17902185 [TBL] [Abstract][Full Text] [Related]
18. The prion protein: Structural features and related toxic peptides. Ronga L; Tizzano B; Palladino P; Ragone R; Urso E; Maffia M; Ruvo M; Benedetti E; Rossi F Chem Biol Drug Des; 2006 Sep; 68(3):139-47. PubMed ID: 17062011 [TBL] [Abstract][Full Text] [Related]
19. Two peptide fragments G55-I72 and K97-A109 from staphylococcal nuclease exhibit different behaviors in conformational preferences for helix formation. Wang M; Shan L; Wang J Biopolymers; 2006 Oct; 83(3):268-79. PubMed ID: 16767771 [TBL] [Abstract][Full Text] [Related]
20. The sequence TGAAKAVALVL from glyceraldehyde-3-phosphate dehydrogenase displays structural ambivalence and interconverts between alpha-helical and beta-hairpin conformations mediated by collapsed conformational states. Patel S; Balaji PV; Sasidhar YU J Pept Sci; 2007 May; 13(5):314-26. PubMed ID: 17437248 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]