These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 15688727)

  • 21. Histopathological observations of a polylactic acid-based device intended for guided bone/tissue regeneration.
    Polimeni G; Koo KT; Pringle GA; Agelan A; Safadi FF; Wikesjö UM
    Clin Implant Dent Relat Res; 2008 May; 10(2):99-105. PubMed ID: 18462206
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Experimental assessment of biodegradable polyglycolic and polylactic acid polymers for medical use].
    Kulakov AA; Grigor'ian AS; Arkhipov AV
    Stomatologiia (Mosk); 2013; 92(5):4-8. PubMed ID: 24300698
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative study of NMP-preloaded and dip-loaded membranes for guided bone regeneration of rabbit cranial defects.
    Karfeld-Sulzer LS; Ghayor C; Siegenthaler B; Gjoksi B; Pohjonen TH; Weber FE
    J Tissue Eng Regen Med; 2017 Feb; 11(2):425-433. PubMed ID: 24919954
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancement of bone ingrowth into collagen/HA composite implants using e-PTFE membranes.
    Marouf HA; al-Khateeb TL; Cataldo E
    J Ir Dent Assoc; 1999; 45(2):52-7. PubMed ID: 10686923
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of a fibrillar polylactic acid homopolymer in sheep cranial defects.
    Hopper RA; Phillips JH; Hughes L
    J Craniofac Surg; 1996 Jan; 7(1):32-5. PubMed ID: 9086899
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of a chitosan membrane coated with polylactic and polyglycolic acid on bone regeneration in a rat calvarial defect.
    Jung UW; Song KY; Kim CS; Lee YK; Cho KS; Kim CK; Choi SH
    Biomed Mater; 2007 Sep; 2(3):S101-5. PubMed ID: 18458451
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydroxyapatite fiber reinforced poly(alpha-hydroxy ester) foams for bone regeneration.
    Thomson RC; Yaszemski MJ; Powers JM; Mikos AG
    Biomaterials; 1998 Nov; 19(21):1935-43. PubMed ID: 9863527
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of the regenerative effect of a 25% doxycycline-loaded biodegradable membrane for guided tissue regeneration.
    Chang CY; Yamada S
    J Periodontol; 2000 Jul; 71(7):1086-93. PubMed ID: 10960014
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The pore size of PLGA bone implants determines the de novo formation of bone tissue in tibial head defects in rats.
    Penk A; Förster Y; Scheidt HA; Nimptsch A; Hacker MC; Schulz-Siegmund M; Ahnert P; Schiller J; Rammelt S; Huster D
    Magn Reson Med; 2013 Oct; 70(4):925-35. PubMed ID: 23165861
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The degradation of the three layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane in vitro.
    Liao S; Watari F; Zhu Y; Uo M; Akasaka T; Wang W; Xu G; Cui F
    Dent Mater; 2007 Sep; 23(9):1120-8. PubMed ID: 17095082
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Poly-L/D-lactide (PLDLA) 96/4 fibrous implants: histological evaluation in the subcutis of experimental design.
    Länsman S; Pääkkö P; Ryhänen J; Kellomäki M; Waris E; Törmälä P; Waris T; Ashammakhi N
    J Craniofac Surg; 2006 Nov; 17(6):1121-8. PubMed ID: 17119416
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Clinical study of guided bone regeneration with resorbable polylactide-co-glycolide acid membrane.
    Kawasaki T; Ohba S; Nakatani Y; Asahina I
    Odontology; 2018 Jul; 106(3):334-339. PubMed ID: 29429055
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calcium phosphate/poly(D,L-lactic-co-glycolic acid) composite bone substitute materials: evaluation of temporal degradation and bone ingrowth in a rat critical-sized cranial defect.
    van de Watering FCJ; van den Beucken JJJP; Walboomers XF; Jansen JA
    Clin Oral Implants Res; 2012 Feb; 23(2):151-159. PubMed ID: 21631594
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A three-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration.
    Liao S; Wang W; Uo M; Ohkawa S; Akasaka T; Tamura K; Cui F; Watari F
    Biomaterials; 2005 Dec; 26(36):7564-71. PubMed ID: 16005963
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biodegradation of carbonate apatite/collagen composite membrane and its controlled release of carbonate apatite.
    Matsumoto T; Okazaki M; Inoue M; Ode S; Chang-Chien C; Nakao H; Hamada Y; Takahashi J
    J Biomed Mater Res; 2002 Jun; 60(4):651-6. PubMed ID: 11948524
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biodegradable effect of PLGA membrane in alveolar bone regeneration on beagle dog.
    Hua N; Ti VL; Xu Y
    Cell Biochem Biophys; 2014 Nov; 70(2):1051-5. PubMed ID: 24833431
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancement of bone regeneration using resorbable ceramics and a polymer-ceramic composite material.
    Schliephake H; Kage T
    J Biomed Mater Res; 2001 Jul; 56(1):128-36. PubMed ID: 11309799
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biocompatibility and long-term toxicity of InnoPol implant, a biodegradable polymer scaffold.
    Kang BC; Kang KS; Lee YS
    Exp Anim; 2005 Jan; 54(1):37-52. PubMed ID: 15725680
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration.
    Widmer MS; Gupta PK; Lu L; Meszlenyi RK; Evans GR; Brandt K; Savel T; Gurlek A; Patrick CW; Mikos AG
    Biomaterials; 1998 Nov; 19(21):1945-55. PubMed ID: 9863528
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biocompatibility and resorbability of a polylactic acid membrane for periodontal guided tissue regeneration.
    Robert P; Mauduit J; Frank RM; Vert M
    Biomaterials; 1993 Apr; 14(5):353-8. PubMed ID: 8507778
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.