BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 15689555)

  • 1. Timed and targeted differential regulation of nitric oxide synthase (NOS) and anti-NOS genes by reward conditioning leading to long-term memory formation.
    Korneev SA; Straub V; Kemenes I; Korneeva EI; Ott SR; Benjamin PR; O'Shea M
    J Neurosci; 2005 Feb; 25(5):1188-92. PubMed ID: 15689555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronal expression of neural nitric oxide synthase (nNOS) protein is suppressed by an antisense RNA transcribed from an NOS pseudogene.
    Korneev SA; Park JH; O'Shea M
    J Neurosci; 1999 Sep; 19(18):7711-20. PubMed ID: 10479675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical time-window for NO-cGMP-dependent long-term memory formation after one-trial appetitive conditioning.
    Kemenes I; Kemenes G; Andrew RJ; Benjamin PR; O'Shea M
    J Neurosci; 2002 Feb; 22(4):1414-25. PubMed ID: 11850468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time dependent differential regulation of a novel long non-coding natural antisense RNA during long-term memory formation.
    Korneev S; Garaliene J; Taylor G; Kemenes I; Kemenes G
    Sci Rep; 2021 Feb; 11(1):3594. PubMed ID: 33574420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A persistent cellular change in a single modulatory neuron contributes to associative long-term memory.
    Jones NG; Kemenes I; Kemenes G; Benjamin PR
    Curr Biol; 2003 Jun; 13(12):1064-9. PubMed ID: 12814554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular characterization of NOS in a mollusc: expression in a giant modulatory neuron.
    Korneev SA; Piper MR; Picot J; Phillips R; Korneeva EI; O'Shea M
    J Neurobiol; 1998 Apr; 35(1):65-76. PubMed ID: 9552167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of MAPK is necessary for long-term memory consolidation following food-reward conditioning.
    Ribeiro MJ; Schofield MG; Kemenes I; O'Shea M; Kemenes G; Benjamin PR
    Learn Mem; 2005; 12(5):538-45. PubMed ID: 16166393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different circuit and monoamine mechanisms consolidate long-term memory in aversive and reward classical conditioning.
    Kemenes I; O'Shea M; Benjamin PR
    Eur J Neurosci; 2011 Jan; 33(1):143-52. PubMed ID: 21070389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Axonal trafficking of an antisense RNA transcribed from a pseudogene is regulated by classical conditioning.
    Korneev SA; Kemenes I; Bettini NL; Kemenes G; Staras K; Benjamin PR; O'Shea M
    Sci Rep; 2013; 3():1027. PubMed ID: 23293742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A context-specific single contingent-reinforcing stimulus boosts intermediate-term memory into long-term memory.
    Parvez K; Moisseev V; Lukowiak K
    Eur J Neurosci; 2006 Jul; 24(2):606-16. PubMed ID: 16903862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulatory role for the serotonergic cerebral giant cells in the feeding system of the snail, Lymnaea. II. Photoinactivation.
    Yeoman MS; Kemenes G; Benjamin PR; Elliott CJ
    J Neurophysiol; 1994 Sep; 72(3):1372-82. PubMed ID: 7807218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different phases of long-term memory require distinct temporal patterns of PKA activity after single-trial classical conditioning.
    Michel M; Kemenes I; Müller U; Kemenes G
    Learn Mem; 2008 Sep; 15(9):694-702. PubMed ID: 18772258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric oxide generation around buccal ganglia accompanying feeding behavior in the pond snail, Lymnaea stagnalis.
    Kobayashi S; Sadamoto H; Ogawa H; Kitamura Y; Oka K; Tanishita K; Ito E
    Neurosci Res; 2000 Sep; 38(1):27-34. PubMed ID: 10997575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppression of nitric oxide (NO)-dependent behavior by double-stranded RNA-mediated silencing of a neuronal NO synthase gene.
    Korneev SA; Kemenes I; Straub V; Staras K; Korneeva EI; Kemenes G; Benjamin PR; O'Shea M
    J Neurosci; 2002 Jun; 22(11):RC227. PubMed ID: 12040086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered gene activity correlated with long-term memory formation of conditioned taste aversion in Lymnaea.
    Azami S; Wagatsuma A; Sadamoto H; Hatakeyama D; Usami T; Fujie M; Koyanagi R; Azumi K; Fujito Y; Lukowiak K; Ito E
    J Neurosci Res; 2006 Nov; 84(7):1610-20. PubMed ID: 16941636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systemic RNA interference for the study of learning and memory in an insect.
    Takahashi T; Hamada A; Miyawaki K; Matsumoto Y; Mito T; Noji S; Mizunami M
    J Neurosci Methods; 2009 Apr; 179(1):9-15. PubMed ID: 19437615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increase in excitability of RPeD11 results in memory enhancement of juvenile and adult Lymnaea stagnalis by predator-induced stress.
    Sunada H; Horikoshi T; Lukowiak K; Sakakibara M
    Neurobiol Learn Mem; 2010 Sep; 94(2):269-77. PubMed ID: 20601028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of key neurons for learning stimulates learning ability in Lymnaea stagnalis.
    Yamanaka M; Hatakeyama D; Sadamoto H; Kimura T; Ito E
    Neurosci Lett; 2000 Jan; 278(1-2):113-6. PubMed ID: 10643814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Failure of delayed nonsynaptic neuronal plasticity underlies age-associated long-term associative memory impairment.
    Watson SN; Risling TE; Hermann PM; Wildering WC
    BMC Neurosci; 2012 Aug; 13():103. PubMed ID: 22898271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Participation of NO signaling in formation of long-term memory in salivary conditioning of the cockroach.
    Matsumoto CS; Kuramochi T; Matsumoto Y; Watanabe H; Nishino H; Mizunami M
    Neurosci Lett; 2013 Apr; 541():4-8. PubMed ID: 23333539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.