These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 15690502)

  • 41. ARTSTREAM: a neural network model of auditory scene analysis and source segregation.
    Grossberg S; Govindarajan KK; Wyse LL; Cohen MA
    Neural Netw; 2004 May; 17(4):511-36. PubMed ID: 15109681
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Auditory stimulus repetition effects on cortical hemoglobin oxygenation: a near-infrared spectroscopy investigation.
    Weiss AP; Duff M; Roffman JL; Rauch SL; Strangman GE
    Neuroreport; 2008 Jan; 19(2):161-5. PubMed ID: 18185101
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: influence of music training.
    Nikjeh DA; Lister JJ; Frisch SA
    Ear Hear; 2009 Aug; 30(4):432-46. PubMed ID: 19494778
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Event-related fMRI of the auditory cortex.
    Belin P; Zatorre RJ; Hoge R; Evans AC; Pike B
    Neuroimage; 1999 Oct; 10(4):417-29. PubMed ID: 10493900
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Auditory streaming by phase relations between components of harmonic complexes: a comparative study of human subjects and bird forebrain neurons.
    Dolležal LV; Itatani N; Günther S; Klump GM
    Behav Neurosci; 2012 Dec; 126(6):797-808. PubMed ID: 23067380
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Intensity changes in a continuous tone: auditory cortical potentials comparison with frequency changes.
    Dimitrijevic A; Lolli B; Michalewski HJ; Pratt H; Zeng FG; Starr A
    Clin Neurophysiol; 2009 Feb; 120(2):374-83. PubMed ID: 19112047
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Investigating brain response to music: a comparison of different fMRI acquisition schemes.
    Mueller K; Mildner T; Fritz T; Lepsien J; Schwarzbauer C; Schroeter ML; Möller HE
    Neuroimage; 2011 Jan; 54(1):337-43. PubMed ID: 20728550
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Functional imaging of human auditory cortex.
    Woods DL; Alain C
    Curr Opin Otolaryngol Head Neck Surg; 2009 Oct; 17(5):407-11. PubMed ID: 19633556
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Event-related fMRI technique for auditory processing with hemodynamics unrelated to acoustic gradient noise.
    Schmithorst VJ; Holland SK
    Magn Reson Med; 2004 Feb; 51(2):399-402. PubMed ID: 14755667
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Human amygdala activation by the sound produced during dental treatment: A fMRI study.
    Yu JF; Lee KC; Hong HH; Kuo SB; Wu CD; Wai YY; Chen YF; Peng YC
    Noise Health; 2015; 17(78):337-42. PubMed ID: 26356376
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparison of continuous sampling with active noise cancelation and sparse sampling for cortical and subcortical auditory functional MRI.
    Dewey RS; Hall DA; Plack CJ; Francis ST
    Magn Reson Med; 2021 Nov; 86(5):2577-2588. PubMed ID: 34196020
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Silent speechreading in the absence of scanner noise: an event-related fMRI study.
    MacSweeney M; Amaro E; Calvert GA; Campbell R; David AS; McGuire P; Williams SC; Woll B; Brammer MJ
    Neuroreport; 2000 Jun; 11(8):1729-33. PubMed ID: 10852233
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The MR tomograph as a sound generator: fMRI tool for the investigation of the auditory cortex.
    Bilecen D; Radü EW; Scheffler K
    Magn Reson Med; 1998 Dec; 40(6):934-7. PubMed ID: 9840840
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of stimulus rate on the auditory cortex using fMRI with 'sparse' temporal sampling.
    Tanaka H; Fujita N; Watanabe Y; Hirabuki N; Takanashi M; Oshiro Y; Nakamura H
    Neuroreport; 2000 Jun; 11(9):2045-9. PubMed ID: 10884068
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Assessment of temporal state-dependent interactions between auditory fMRI responses to desired and undesired acoustic sources.
    Olulade O; Hu S; Gonzalez-Castillo J; Tamer GG; Luh WM; Ulmer JL; Talavage TM
    Hear Res; 2011 Jul; 277(1-2):67-77. PubMed ID: 21426929
    [TBL] [Abstract][Full Text] [Related]  

  • 56. fMRI of the auditory system: understanding the neural basis of auditory gestalt.
    Di Salle F; Esposito F; Scarabino T; Formisano E; Marciano E; Saulino C; Cirillo S; Elefante R; Scheffler K; Seifritz E
    Magn Reson Imaging; 2003 Dec; 21(10):1213-24. PubMed ID: 14725929
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of scanner acoustic noise on intrinsic brain activity during auditory stimulation.
    Yakunina N; Kang EK; Kim TS; Min JH; Kim SS; Nam EC
    Neuroradiology; 2015 Oct; 57(10):1063-73. PubMed ID: 26193957
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Functional magnetic resonance imaging of a human auditory cortex area involved in foreground-background decomposition.
    Scheich H; Baumgart F; Gaschler-Markefski B; Tegeler C; Tempelmann C; Heinze HJ; Schindler F; Stiller D
    Eur J Neurosci; 1998 Feb; 10(2):803-9. PubMed ID: 9749748
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Silent echo-planar imaging for auditory FMRI.
    Schmitter S; Diesch E; Amann M; Kroll A; Moayer M; Schad LR
    MAGMA; 2008 Sep; 21(5):317-25. PubMed ID: 18716815
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Acoustic response characteristics of posterior intralaminar nucleus of auditory thalamus in mice].
    Zou JS; Wang YW; Han RR; Yuan KX; Zhao LM
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2019 Sep; 54(9):670-675. PubMed ID: 31550758
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.