These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 15690722)
1. 1.156-GHz self-aligned vibrating micromechanical disk resonator. Wang J; Ren Z; Nguyen CT IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Dec; 51(12):1607-28. PubMed ID: 15690722 [TBL] [Abstract][Full Text] [Related]
2. 1.52-GHz micromechanical extensional wine-glass mode ring resonators. Xie Y; Li SS; Lin YW; Ren Z; Nguyen CT IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Apr; 55(4):890-907. PubMed ID: 18467235 [TBL] [Abstract][Full Text] [Related]
3. A negative-capacitance equivalent circuit model for parallel-plate capacitive-gap-transduced micromechanical resonators. Akgul M; Wu L; Ren Z; Nguyen CT IEEE Trans Ultrason Ferroelectr Freq Control; 2014 May; 61(5):849-69. PubMed ID: 24801124 [TBL] [Abstract][Full Text] [Related]
4. MEMS technology for timing and frequency control. Nguyen CT IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Feb; 54(2):251-70. PubMed ID: 17328323 [TBL] [Abstract][Full Text] [Related]
5. Crossed ring anchored disk resonator for self-alignment of the anchor. Baghelani M; Ghavifekr HB; Ebrahimi A J Adv Res; 2014 Jan; 5(1):109-15. PubMed ID: 25685477 [TBL] [Abstract][Full Text] [Related]
6. Side-Supported Radial-Mode Thin-Film Piezoelectric-on-Silicon Disk Resonators. Shahraini S; Shahmohammadi M; Fatemi H; Abdolvand R IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Apr; 66(4):727-736. PubMed ID: 30668498 [TBL] [Abstract][Full Text] [Related]
7. Conceptual design of a high-Q, 3.4-GHz thin film quartz resonator. Patel MS; Yong YK IEEE Trans Ultrason Ferroelectr Freq Control; 2009 May; 56(5):912-20. PubMed ID: 19473909 [TBL] [Abstract][Full Text] [Related]
8. Effects of electromagnetic radiation on the Q of quartz resonators. Yong YK; Patel M; Vig J; Ballato A IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):353-60. PubMed ID: 19251522 [TBL] [Abstract][Full Text] [Related]
9. Reducing anchor loss in micromechanical extensional mode resonators. Taş V; Olcum S; Aksoy MD; Atalar A IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):448-54. PubMed ID: 20178911 [TBL] [Abstract][Full Text] [Related]
10. Toward ultimate miniaturization of high Q silicon traveling-wave microresonators. Soltani M; Li Q; Yegnanarayanan S; Adibi A Opt Express; 2010 Sep; 18(19):19541-57. PubMed ID: 20940850 [TBL] [Abstract][Full Text] [Related]
11. Super-high-frequency two-port AlN contour-mode resonators for RF applications. Rinaldi M; Zuniga C; Zuo C; Piazza G IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):38-45. PubMed ID: 20040424 [TBL] [Abstract][Full Text] [Related]
12. Lateral Extensional Mode Piezoelectric ZnO-on-Nickel RF MEMS Resonators for Back-End-of-Line Integration. Zaman A; Alsolami A; Wei M; Rivera I; Baghelani M; Wang J Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241712 [TBL] [Abstract][Full Text] [Related]
13. RF Channel-Select Micromechanical Disk Filters-Part II: Demonstration. Akgul M; Ozgurluk A; Nguyen CT IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Jan; 66(1):218-235. PubMed ID: 30489267 [TBL] [Abstract][Full Text] [Related]
16. SAW resonator design and fabrication for 2.0, 2.6 and 3.3 GHz. Pendergrass LL; Studebaker LG IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(3):372-9. PubMed ID: 18290162 [TBL] [Abstract][Full Text] [Related]
17. Energy Loss in a MEMS Disk Resonator Gyroscope. Xie J; Hao Y; Yuan W Micromachines (Basel); 2019 Jul; 10(8):. PubMed ID: 31344925 [TBL] [Abstract][Full Text] [Related]
18. A Study on the Effects of Bottom Electrode Designs on Aluminum Nitride Contour-Mode Resonators. Jung SI; Ryu C; Piazza G; Kim HJ Micromachines (Basel); 2019 Nov; 10(11):. PubMed ID: 31703310 [TBL] [Abstract][Full Text] [Related]