These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 15690723)
1. Plane harmonic waves in an infinite piezoelectric plate with dissipation. Lee PC; Liu N IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Dec; 51(12):1629-38. PubMed ID: 15690723 [TBL] [Abstract][Full Text] [Related]
2. Thickness vibrations of a piezoelectric plate with dissipation. Lee PC; Liu N; Ballato A IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jan; 51(1):52-62. PubMed ID: 14995016 [TBL] [Abstract][Full Text] [Related]
3. Propagation of thickness-twist waves in a piezoelectric ceramic plate with unattached electrodes. Qian ZH; Kishimoto K; Yang J Ultrasonics; 2009 Jun; 49(6-7):501-4. PubMed ID: 19297001 [TBL] [Abstract][Full Text] [Related]
4. Thickness resonances dispersion characteristics of a lossy piezoceramic plate with electrodes of arbitrary conductivity. Mezheritsky AA; Mezheritsky AV IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Dec; 54(12):2662-77. PubMed ID: 18276573 [TBL] [Abstract][Full Text] [Related]
5. Second-order theories for extensional vibrations of piezoelectric crystal plates and strips. Lee PC; Edwards NP; Lin WS; Syngellakis S IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Nov; 49(11):1497-506. PubMed ID: 12484472 [TBL] [Abstract][Full Text] [Related]
6. Mechanical effects of electrodes on the vibrations of quartz crystal plates. Lee PC; Huang R IEEE Trans Ultrason Ferroelectr Freq Control; 2002 May; 49(5):612-25. PubMed ID: 12046937 [TBL] [Abstract][Full Text] [Related]
7. Forced vibrations of SC-cut quartz crystal rectangular plates with partial electrodes by the Lee plate equations. Wu R; Wang W; Chen G; Du J; Ma T; Wang J Ultrasonics; 2016 Feb; 65():338-44. PubMed ID: 26433435 [TBL] [Abstract][Full Text] [Related]
8. Wave propagation in piezoelectric layered structures of film bulk acoustic resonators. Zhu F; Qian ZH; Wang B Ultrasonics; 2016 Apr; 67():105-111. PubMed ID: 26812132 [TBL] [Abstract][Full Text] [Related]
9. Governing equations for a piezoelectric plate with graded properties across the thickness. Lee PY; Yu JD IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(1):236-50. PubMed ID: 18244175 [TBL] [Abstract][Full Text] [Related]
10. Thickness-twist and face-shear waves in piezoelectric plates of monoclinic crystals. Zhu J; Chen W IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Dec; 58(12):2763-7. PubMed ID: 23443714 [TBL] [Abstract][Full Text] [Related]
11. Computation of Propagating and Non-Propagating Lamb-Like Wave in a Functionally Graded Piezoelectric Spherical Curved Plate by an Orthogonal Function Technique. Zhang X; Liang S; Han X; Li Z Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30477178 [TBL] [Abstract][Full Text] [Related]
12. Effects of a liquid layer on thickness-shear vibrations of rectangular AT-cut quartz plates. Lee PC; Huang R IEEE Trans Ultrason Ferroelectr Freq Control; 2002 May; 49(5):604-11. PubMed ID: 12046936 [TBL] [Abstract][Full Text] [Related]
13. The determination of electrical parameters of quartz crystal resonators with the consideration of dissipation. Wang J; Zhao W; Du J Ultrasonics; 2006 Dec; 44 Suppl 1():e869-73. PubMed ID: 16843512 [TBL] [Abstract][Full Text] [Related]
14. Piezoelectric ceramic disks with thickness-graded material properties. Lee PY; Yu JD; Li X; Shih WH IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):205-15. PubMed ID: 18238415 [TBL] [Abstract][Full Text] [Related]
15. Free and forced vibrations of SC-cut quartz crystal rectangular plates with the first-order Mindlin plate equations. Wu R; Wang W; Chen G; Chen H; Ma T; Du J; Wang J Ultrasonics; 2017 Jan; 73():96-106. PubMed ID: 27623522 [TBL] [Abstract][Full Text] [Related]
16. Influence of Surface Conductivity on Dispersion Curves, Mode Shapes, Stress, and Potential for Lamb Waves Propagating in Piezoelectric Plate. Zhu F; Wang B; Qian Z; Kuznetsova I; Ma T IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Apr; 67(4):855-862. PubMed ID: 31751237 [TBL] [Abstract][Full Text] [Related]
17. On the propagation of long thickness-stretch waves in piezoelectric plates. Huang D; Yang J Ultrasonics; 2014 Jul; 54(5):1277-80. PubMed ID: 24582557 [TBL] [Abstract][Full Text] [Related]
18. Wave propagation in layered piezoelectric rectangular bar: an extended orthogonal polynomial approach. Yu JG; Zhang Ch; Lefebvre JE Ultrasonics; 2014 Aug; 54(6):1677-84. PubMed ID: 24680243 [TBL] [Abstract][Full Text] [Related]
19. Damping Enhancement of Composite Panels by Inclusion of Shunted Piezoelectric Patches: A Wave-Based Modelling Approach. Chronopoulos D; Collet M; Ichchou M Materials (Basel); 2015 Feb; 8(2):815-828. PubMed ID: 28787972 [TBL] [Abstract][Full Text] [Related]
20. Calculations of Lamb wave band gaps and dispersions for piezoelectric phononic plates using mindlin's theory-based plane wave expansion method. Hsu JC; Wu TT IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):431-41. PubMed ID: 18334349 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]