These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 15690723)
21. Comparison between the dispersion curves calculated in complex frequency and the minima of the reflection coefficients for an embedded layer. Bernard A; Deschamps M; Lowe MJ J Acoust Soc Am; 2000 Feb; 107(2):793-800. PubMed ID: 10687688 [TBL] [Abstract][Full Text] [Related]
22. Piezoelectric ceramic rectangular transducers in flexural vibration. Lin S IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jul; 51(7):865-70. PubMed ID: 15301006 [TBL] [Abstract][Full Text] [Related]
23. Lamb waves propagation in layered piezoelectric/piezomagnetic plates. Ezzin H; Ben Amor M; Ben Ghozlen MH Ultrasonics; 2017 Apr; 76():63-69. PubMed ID: 28063364 [TBL] [Abstract][Full Text] [Related]
24. Propagation of SH waves in an infinite/semi-infinite piezoelectric/piezomagnetic periodically layered structure. Pang Y; Liu YS; Liu JX; Feng WJ Ultrasonics; 2016 Apr; 67():120-128. PubMed ID: 26836289 [TBL] [Abstract][Full Text] [Related]
25. A normal mode expansion for piezoelectric plates and certain of its applications. Peach RC IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(5):593-611. PubMed ID: 18290192 [TBL] [Abstract][Full Text] [Related]
26. The fifth-order overtone vibrations of quartz crystal plates with corrected higher-order Mindlin plate equations. Wang J; Wu R; Yang L; Du J; Ma T IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Oct; 59(10):2278-91. PubMed ID: 23143577 [TBL] [Abstract][Full Text] [Related]
27. Focusing and waveguiding of Lamb waves in micro-fabricated piezoelectric phononic plates. Chiou MJ; Lin YC; Ono T; Esashi M; Yeh SL; Wu TT Ultrasonics; 2014 Sep; 54(7):1984-90. PubMed ID: 24909597 [TBL] [Abstract][Full Text] [Related]
28. Extensional, thickness-stretch and symmetric thickness-shear vibrations of piezoceramic disks. Huang R; Lee PC; Lin WS; Yu JD IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Nov; 49(11):1507-15. PubMed ID: 12484473 [TBL] [Abstract][Full Text] [Related]
29. An analysis of thickness-shear vibrations of doubly-rotated quartz crystal plates with the corrected first-order Mindlin plate equations. Du J; Wang W; Chen G; Wu R; Huang D; Ma T; Wang J IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Nov; 60(11):2371-80. PubMed ID: 24158292 [TBL] [Abstract][Full Text] [Related]
30. Effects of air resistance on AT-cut quartz thickness-shear resonators. Chen Y; Wang J; Du J; Zhang W; Yang J IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Feb; 60(2):402-7. PubMed ID: 23357914 [TBL] [Abstract][Full Text] [Related]
31. Thickness vibration of piezoelectric plates of 6mm crystals with tilted six-fold axis and two-layered thick electrodes. Du J; Xian K; Wang J; Yang J Ultrasonics; 2009 Feb; 49(2):149-52. PubMed ID: 18951601 [TBL] [Abstract][Full Text] [Related]
32. On the accuracy of Mindlin plate predictions for the frequency-temperature behavior of resonant modes in AT- and SC-cut quartz plates. Yong YK; Wang J; Imai T IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):1-13. PubMed ID: 18238393 [TBL] [Abstract][Full Text] [Related]
33. Investigation of Bandgap Properties of a Piezoelectric Phononic Crystal Plate Based on the PDE Module in COMSOL. Liu G; Qian D Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793396 [TBL] [Abstract][Full Text] [Related]
34. Two-dimensional analysis of the effect of an electrode layer on surface acoustic waves in a finite anisotropic plate. Wang J; Du J; Li Z; Lin J Ultrasonics; 2006 Dec; 44 Suppl 1():e935-9. PubMed ID: 16814834 [TBL] [Abstract][Full Text] [Related]
35. Shear-horizontal waves in a rotated Y-cut quartz plate in contact with a viscous fluid. Sun J; Du J; Yang J; Wang J Ultrasonics; 2012 Jan; 52(1):133-7. PubMed ID: 21906772 [TBL] [Abstract][Full Text] [Related]
36. The calculation of electrical parameters of AT-cut quartz crystal resonators with the consideration of material viscosity. Wang J; Zhao W; Du J; Hu Y Ultrasonics; 2011 Jan; 51(1):65-70. PubMed ID: 20594568 [TBL] [Abstract][Full Text] [Related]
37. Bandgap Calculation and Experimental Analysis of Piezoelectric Phononic Crystals Based on Partial Differential Equations. Song C; Han Y; Jiang Y; Xie M; Jiang Y; Tang K Materials (Basel); 2024 Aug; 17(15):. PubMed ID: 39124444 [TBL] [Abstract][Full Text] [Related]
38. Analysis of a rectangular ceramic plate in electrically forced thickness-twist vibration as a piezoelectric transformer. Yang J; Liu J; Li J IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Apr; 54(4):830-5. PubMed ID: 17441592 [TBL] [Abstract][Full Text] [Related]
39. Surface Roughness Effects on the Vibration Characteristics of AT-Cut Quartz Crystal Plate. Li M; Li P; Li N; Liu D; Kuznetsova IE; Qian Z Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299893 [TBL] [Abstract][Full Text] [Related]
40. A derivation of the Christoffel equation with damping. Shane Fazzio R Ultrasonics; 2006 Dec; 45(1-4):196-207. PubMed ID: 17084430 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]